【題目】下列說法:
①分類變量與的隨機(jī)變量越大,說明“與有關(guān)系”的可信度越大.
②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為中, ,
則.正確的個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個結(jié)論:
(1)如果的展開式中各項(xiàng)系數(shù)之和為128,則展開式中的系數(shù)是-21;
(2)用相關(guān)指數(shù)來刻畫回歸效果, 的值越大,說明模型的擬合效果越差;
(3)若是上的奇函數(shù),且滿足,則的圖象關(guān)于對稱;
(4)一個籃球運(yùn)動員投籃一次得3分的概率為,得2分的概率為,不得分的概率為,且,已知他投籃一次得分的數(shù)學(xué)期望為2,則的最小值為;
其中正確結(jié)論的序號為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)一種新藥,在試驗(yàn)藥效時發(fā)現(xiàn):如果成人按規(guī)定劑量服用,那么服藥后每毫升血液中的含藥量y(微克)與時間x(小時)之間滿足y=其對應(yīng)曲線(如圖所示)過點(diǎn).
(1)試求藥量峰值(y的最大值)與達(dá)峰時間(y取最大值時對應(yīng)的x值);
(2)如果每毫升血液中含藥量不少于1微克時治療疾病有效,那么成人按規(guī)定劑量服用該藥后一次能維持多長的有效時間(精確到0.01小時)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確立下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對年銷售量(單位: )和年利潤(單位:千元)的影響.對近年的宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計量的值.
表中
(Ⅰ)根據(jù)散點(diǎn)圖判斷, 與哪一個適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利率與的關(guān)系為.根據(jù)(Ⅱ)的結(jié)果回答下列問題:
(i)年宣傳費(fèi)時,年銷售量及利潤的預(yù)報值是多少?
(ii)年宣傳費(fèi)為何值時,年利率的預(yù)報值最大?
附:對于一組數(shù)據(jù)……,其回歸線的斜率和截距的最小二乘法估計分別為: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx為偶函數(shù),數(shù)列{an}滿足an+1=2f(an-1)+1,且a1=3,an>1.
(1)設(shè)bn=log2(an-1),證明:數(shù)列{bn+1}為等比數(shù)列;
(2)設(shè)cn=nbn,求數(shù)列{cn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
已知函數(shù)(為常數(shù))的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為.
(1)求的值及函數(shù)的極值;
(2)證明:當(dāng)時,
(3)證明:對任意給定的正數(shù),總存在,使得當(dāng)時,恒有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4x2﹣4ax+a2﹣2a+2在區(qū)間[0,2]上有最小值3,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x),若存在x0∈R,使得f(x0)=x0成立,則稱x0為f(x)的天宮一號點(diǎn).已知函數(shù)f(x)=ax2+(b-7)x+18的兩個天宮一號點(diǎn)分別是-3和2.
(1)求a,b的值及f(x)的表達(dá)式;
(2)當(dāng)函數(shù)f(x)的定義域是[t,t+1]時,求函數(shù)f(x)的最大值g(t).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域?yàn)?-3,3),
滿足f(-x)=-f(x),且對任意x,y,都有f(x)-f(y)=f(x-y),當(dāng)x<0時,f(x)>0,f(1)=-2.
(1)求f(2)的值;
(2)判斷f(x)的單調(diào)性,并證明;
(3)若函數(shù)g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com