將3個(gè)不同的小球放入4個(gè)盒子中,則不同放法種數(shù)有
 
考點(diǎn):排列、組合及簡單計(jì)數(shù)問題
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)題意,分析可得每個(gè)小球都有4種可能的放法,直接由分步計(jì)數(shù)原理計(jì)算可得答案.
解答: 解:根據(jù)題意,依次對(duì)3個(gè)小球進(jìn)行討論:
第一個(gè)小球可以放入任意一個(gè)盒子,即有4種不同的放法,
同理第二個(gè)小球也有4種不同的放法,
第三個(gè)小球也有4種不同的放法,
即每個(gè)小球都有4種可能的放法,
根據(jù)分步計(jì)數(shù)原理知共有即4×4×4=64不同的放法,
故答案為:64.
點(diǎn)評(píng):本題考查分步計(jì)數(shù)原理的運(yùn)用,注意題干沒有限制盒子里小球的數(shù)目,不能用排列、組合公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3-
3
2
(a+2)x2+6x+b在x=2處取得極值

(Ⅰ)求a的值及f(x)的單調(diào)區(qū)間
(Ⅱ)?x∈[0,3]使f(x)<b2,求b的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)P到直線l:x+4=0的距離與它到點(diǎn)M(2,0)的距離之差為2,記點(diǎn)P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)問直線l上是否存在點(diǎn)Q,使得過點(diǎn)Q且斜率分別為k1,k2的兩直線與曲線C相切,同時(shí)滿足k1+2k2=0,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(x+φ)(0≤φ≤π)是偶函數(shù).
(1)求φ的值;
(2)若將函數(shù)f(x)的圖象向左平移φ個(gè)單位后能與正弦曲線重合,求φ的最小正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量t,y滿足關(guān)系式loga
t
a3
=logt
y
a3
(a>0且a≠1,t>0且t≠1),變量t,x滿足關(guān)系式logat=x.
(1)求y關(guān)于x的函數(shù)表達(dá)式y(tǒng)=f(x);
(2)若(1)中確定的函數(shù)y=f(x)在區(qū)間[2a,3a]上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的偶函數(shù)f(x)滿足f(x-4)=f(x),且在區(qū)間[0,2]上f(x)=x.若關(guān)于x的方程f(x)=logax有三個(gè)不同的根,則a的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線9x2-16y2=144的離心率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是雙曲線
x2
4
-
y2
b2
=1的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,且∠F1PF2=90°,若△F1PF2的面積為2,則b等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
loga(x-2)
(0<a<1)的定義域是
 

查看答案和解析>>

同步練習(xí)冊答案