已知函數(shù)f(x)=ax2+bx(a≠0)的導(dǎo)函數(shù)f′(x)=-2x+7,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)Pn(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上,求數(shù)列{an}的通項(xiàng)公式及Sn的最大值.
an=-2n+8(n∈N*),當(dāng)n=3或n=4時(shí),Sn取得最大值12
【解析】由題意可知:∵f(x)=ax2+bx(a≠0),∴f′(x)=2ax+b,由f′(x)=-2x+7對(duì)應(yīng)相等可得a=-1,b=7,
∴可得f(x)=-x2+7x.因?yàn)辄c(diǎn)Pn(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上,所以有Sn=-n2+7n.
當(dāng)n=1時(shí),a1=S1=6;
當(dāng)n≥2時(shí),an=Sn-Sn-1=-2n+8,a1=6適合上式,
∴an=-2n+8(n∈N*).
令an=-2n+8≥0得n≤4,當(dāng)n=3或n=4時(shí),Sn取得最大值12.
綜上,an=-2n+8(n∈N*),當(dāng)n=3或n=4時(shí),Sn取得最大值12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第5課時(shí)練習(xí)卷(解析版) 題型:解答題
某化工企業(yè)2007年底投入100萬(wàn)元,購(gòu)入一套污水處理設(shè)備.該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬(wàn)元,此外每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬(wàn)元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬(wàn)元.
(1)求該企業(yè)使用該設(shè)備x年的年平均污水處理費(fèi)用y(萬(wàn)元);
(2)為使該企業(yè)的年平均污水處理費(fèi)用最低,該企業(yè)幾年后需要重新更換新的污水處理設(shè)備?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第2課時(shí)練習(xí)卷(解析版) 題型:解答題
已知數(shù)列{an}為等差數(shù)列,若<-1,且它們的前n項(xiàng)和Sn有最大值,求使得Sn<0的n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第2課時(shí)練習(xí)卷(解析版) 題型:填空題
在等差數(shù)列{an}中,a1=2,d=3,則a6=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第1課時(shí)練習(xí)卷(解析版) 題型:填空題
已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足log2(1+Sn)=n+1,則{an}的通項(xiàng)公式為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第9課時(shí)練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=|lgx|,若0<a<b,且f(a)=f(b),則a+2b的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第9課時(shí)練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=lg(ax-bx)(a>1>b>0).
(1)求函數(shù)y=f(x)的定義域;
(2)在函數(shù)y=f(x)的圖象上是否存在不同的兩點(diǎn),使過此兩點(diǎn)的直線平行于x軸;
(3)當(dāng)a、b滿足什么關(guān)系時(shí),f(x)在區(qū)間上恒取正值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第8課時(shí)練習(xí)卷(解析版) 題型:填空題
以下函數(shù)中滿足f(x+1)>f(x)+1的是________.(填序號(hào))
①f(x)=lnx;②f(x)=ex;③f(x)=ex-x;④f(x)=ex+x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第6課時(shí)練習(xí)卷(解析版) 題型:解答題
求二次函數(shù)f(x)=x2-4x-1在區(qū)間[t,t+2]上的最小值g(t),其中t∈R.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com