【題目】在一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次,在處每投進(jìn)一球得3分;在處每投進(jìn)一球得2分,如果前兩次得分之和超過(guò)3分就停止投籃;否則投第3次,某同學(xué)在處的抽中率,在處的抽中率為,該同學(xué)選擇現(xiàn)在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:
0 | 2 | 3 | 4 | 5 | |
0.03 |
(1)求的值;
(2)求隨機(jī)變量的數(shù)學(xué)期望;
(3)試比較該同學(xué)選擇上述方式投籃得分超過(guò)3分與選擇都在處投籃得分超過(guò)3分的概率的大小.
【答案】(1);(2);(3)該同學(xué)選擇上述方式投籃得分超過(guò)分的概率大于選擇都在處投籃得分超過(guò)分的概率.
【解析】
試題分析:(1)根據(jù),解得;(2)根據(jù)相互獨(dú)立事件概率計(jì)算公式,計(jì)算得,由此計(jì)算得期望為;(3)用表示事件“該同學(xué)在處投第一球,以后都在處投,得分超過(guò)分”,用表示事件“該同學(xué)都在處投,得分超過(guò)分”,計(jì)算得,.
試題解析:
(1)由題意可知,對(duì)應(yīng)的事件為“三次投籃沒(méi)有一次投中”,
∴,
∵,解得;
(2)根據(jù)題意,,
,,
∴,
(3)用表示事件“該同學(xué)在處投第一球,以后都在處投,得分超過(guò)3分”,用表示事件“該同學(xué)都在處投,得分超過(guò)3分”,
,∴,
即該同學(xué)選擇都在處投籃得分超過(guò)3分的概率的大于該同學(xué)在處投第一球,以后都在處投,得分超過(guò)3分的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐,底面是、邊長(zhǎng)為的菱形,又底,且,點(diǎn)分別是棱的中點(diǎn).
(1)證明:平面;
(2)證明:平面平面;
(3)求點(diǎn)到平面的距離.[
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx(a≠0)的導(dǎo)函數(shù)f′(x)=-2x+7,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)Pn(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上,求數(shù)列{an}的通項(xiàng)公式及Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的對(duì)稱軸為,.
(1)求函數(shù)的最小值及取得最小值時(shí)的值;
(2)試確定的取值范圍,使至少有一個(gè)實(shí)根;
(3)當(dāng)時(shí),,對(duì)任意有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)絡(luò)購(gòu)物已經(jīng)被大多數(shù)人接受,隨著時(shí)間的推移,網(wǎng)絡(luò)購(gòu)物的人越來(lái)越多,然而也有部分人對(duì)網(wǎng)絡(luò)購(gòu)物的質(zhì)量和信譽(yù)產(chǎn)生懷疑。對(duì)此,某新聞媒體進(jìn)行了調(diào)查,在所有參與調(diào)查的人中,持“支持”和“不支持”態(tài)度的人數(shù)如下表所示:
年齡 態(tài)度 | 支持 | 不支持 |
20歲以上50歲以下 | 800 | 200 |
50歲以 (含50歲) | 100 | 300 |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個(gè)人,已知從持“支持”態(tài)度的人中抽取了9人,求的值;
(2)是否有99.9%的把握認(rèn)為支持網(wǎng)絡(luò)購(gòu)物與年齡有關(guān)?
參考數(shù)據(jù):
,其中,
0.05 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,,側(cè)面是邊長(zhǎng)為2的等邊三角形,點(diǎn)是的中點(diǎn),且平面平面.
(I)求異面直線與所成角的余弦值;
(II)若點(diǎn)在線段上移動(dòng),是否存在點(diǎn)使平面與平面所成的角為?若存在,指出點(diǎn)的位置,否則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,曲線與在原點(diǎn)處有公共切線.
(I)若為函數(shù)的極大值點(diǎn),求的單調(diào)區(qū)間(用表示);
(II)若,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知隨機(jī)變量X~N(μ,σ2),且其正態(tài)曲線在(-∞,80)上是增函數(shù),在(80,+∞)上為減函數(shù),且P(72≤X≤88)=0.682 6.
(1)求參數(shù)μ,σ的值;
(2)求P(64<X≤72).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某生態(tài)園將一三角形地塊的一角開(kāi)辟為水果園種植桃樹(shù),已知角為,的長(zhǎng)度均大于米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆.
(1)若圍墻總 長(zhǎng)度為米,如何圍可使得三角形地塊的面積最大?
(2)已知段圍墻高米,段圍墻高米,造價(jià)均為每平方米元.若圍圍墻用了元,問(wèn)如何圍可使竹籬笆用料最?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com