已知
OA
OB
不共線,點(diǎn)C在直線AB上,實數(shù)x滿足x2
OA
+x
OB
-
OC
=
0
,則x=
 
考點(diǎn):平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:根據(jù)題意,結(jié)合平面向量的基本定理,列出方程x2+x=1,解方程即可.
解答: 解:根據(jù)題意,得;
∵x2
OA
+x
OB
-
OC
=
0
,
OC
=x2
OA
+x
OB

又∵點(diǎn)C在直線AB上,且
OA
OB
不共線,
∴x2+x=1,
解得x=
-1±
5
2

故答案為:
-1±
5
2
點(diǎn)評:本題考查了平面向量的基本定理的應(yīng)用問題和解一元二次方程的問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用五點(diǎn)作圖法畫出函數(shù)y=1-sinx,x∈[0,2π]的簡圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

銳角△ABC中,若B=2A,則
b
a
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下命題:
①已知向量
OP1
OP2
,
OP3
滿足條件
OP1
+
OP2
+
OP3
=0,且|
OP1
|=|
OP2
|=|
OP3
|=1,則△P1P2P3為正三角形;
②已知a>b>c,若不等式
1
a-b
+
1
b-c
k
a-c
恒成立,則k∈(0,2);
③曲線y=
1
3
x3在點(diǎn)(1,
1
3
)處切線與直線x+y-3=0垂直;
④若平面α⊥平面γ,平面β∥平面γ,則α∥β.
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x5,x∈[0,1]
x
,x∈[1,2]
,求曲線y=f(x)與x軸、直線x=0、x=2所圍成的圖形的面積
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為1,E,F(xiàn)分別為棱DD1和AB上的點(diǎn),則下列說法正確的是
 
.(填上所有正確命題的序號)
①A1C⊥平面B1CF;
②在平面A1B1C1D1內(nèi)總存在與平面B1EF平行的直線;
③△B1EF在側(cè)面BCC1B1上的正投影是面積為定值的三角形;
④當(dāng)E,F(xiàn)為中點(diǎn)時,平面B1EF截該正方體所得的截面圖形是五邊形;
⑤當(dāng)E,F(xiàn)為中點(diǎn)時,平面B1EF與棱AD交于點(diǎn)P,則AP=
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b是正數(shù),且滿足2<a+2b<4,那么
b+1
a+1
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是曲線C:
x2
4
-y2=1上的任意一點(diǎn),直線l:x=2與雙曲線C的漸近線交于A,B兩點(diǎn),若
OP
OA
OB
,(λ,μ∈R,O為坐標(biāo)原點(diǎn)),則下列不等式恒成立的是( 。
A、λ22
1
2
B、λ22≥2
C、λ22
1
2
D、λ22≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
-
1
x
,x<0
lnx+1,x>0
,則不等式f(x)>f(1)的解集是(  )
A、(-1,1)
B、(-1,0)∪(0,1)
C、(-∞,-1)∪(1,+∞)
D、(-1,0)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案