【題目】某重點中學100位學生在市統(tǒng)考中的理科綜合分數(shù),以, , , , , , 分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求理科綜合分數(shù)的眾數(shù)和中位數(shù);
(3)在理科綜合分數(shù)為, , , 的四組學生中,用分層抽樣的方法抽取11名學生,則理科綜合分數(shù)在的學生中應抽取多少人?
【答案】(1) (2)230, (3)5人
【解析】試題分析:(1)根據(jù)直方圖求出x的值即可;
(2)根據(jù)直方圖求出眾數(shù),設中位數(shù)為a,得到關于a的方程,解出即可;
(3)分別求出[220,240),[240,260),[260,280),[280,300]的用戶數(shù),根據(jù)分層抽樣求出滿足條件的概率即可.
試題解析:
(1)由,
解得,∴直方圖中的值為.
(2)理科綜合分數(shù)的眾數(shù)是,
∵,
∴理科綜合分數(shù)的中位數(shù)在內(nèi),設中位數(shù)為,
則,
解得,即中位數(shù)為.
(3)理科綜合分數(shù)在的學生有(位),
同理可求理科綜合分數(shù)為, , 的用戶分別有15位、10位、5位,
故抽取比為,
∴從理科綜合分數(shù)在的學生中應抽取人.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+c,下列結論中錯誤的是( )
A.xα∈R,f(xα)=0
B.函數(shù)y=f(x)的圖象是中心對稱圖形
C.若xα是f(x)的極小值點,則f(x)在區(qū)間(﹣∞,xα)單調(diào)遞減
D.若xα是f(x)的極值點,則f′(xα)=0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,且經(jīng)過點.
(1)求橢圓方程;
(2)過點的直線與橢圓交于兩個不同的點,求線段的垂直平分線在軸截距的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=x2+ax+ 是增函數(shù),則a的取值范圍是( )
A.[﹣1,0]
B.[﹣1,∞]
C.[0,3]
D.[3,+∞]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD都是等邊三角形.
(1)證明:PB⊥CD;
(2)求二面角A﹣PD﹣C的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品有4只次品和6只正品,每只產(chǎn)品均不相同且可區(qū)分,今每次取出一只來測試,直到這4只次品全測出為止,則最后一只次品恰好在第五次測試時被發(fā)現(xiàn),則不同情況種數(shù)是______(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知對任意平面向量,把繞其起點沿逆時針方向旋轉角得到向量,,叫做把點繞點逆時針方向旋轉角得到點.
(1)已知平面內(nèi)點,點,把點繞點順時針方向旋轉后得到點,求點的坐標;
(2)設平面內(nèi)曲線上的每一點繞坐標原點沿逆時針方向旋轉后得到的點的軌跡方程是曲線,求原來曲線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列{an} 為等比數(shù)列,等差數(shù)列{bn} 的前n 項和為Sn (n∈N* ),且滿足:S13=208,S9﹣S7=41,a1=b2,a3=b3.
(1)求數(shù)列{an},{bn} 的通項公式;
(2)設Tn=a1b1+a2b2+…+anbn (n∈N* ),求Tn;
(3)設,是否存在正整數(shù)m,使得cm·cm+1·cm+2+8=3(cm+cm+1+cm+2).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com