【題目】已知?jiǎng)狱c(diǎn)到定直線的距離與到定點(diǎn)的距離之比為.
(1)求點(diǎn)的軌跡的方程;
(2)已知點(diǎn),在軸上是否存在一點(diǎn),使得曲線上另有一點(diǎn),滿(mǎn)足,且?若存在,求出所有符合條件的點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)(2)存在;或
【解析】
(1)設(shè),根據(jù)已知條件可得,化簡(jiǎn)即可得到點(diǎn)的軌跡的方程;
(2) 假設(shè)在軸上存在符合題意的點(diǎn),則點(diǎn)在線段的中垂線上,分三種情況討論直線的斜率即:斜率不存在;斜率為零;斜率不為零;求出滿(mǎn)足條件點(diǎn)的坐標(biāo)即可.
解:(1)設(shè),由題可得,
化簡(jiǎn)得,即,
所以曲線的方程為.
(2)假設(shè)在軸上存在符合題意的點(diǎn),
則點(diǎn)在線段的中垂線上,由題意知直線的斜率顯然存在.
當(dāng)直線的斜率為時(shí),則,.
設(shè),則,.
由,解得,此時(shí).
當(dāng)直線的斜率不為時(shí),設(shè)直線的方程為.
聯(lián)立得,
則,解得,即.
的中點(diǎn)為.
線段的中垂線為,
令,得,即.
所以,,
所以.
由形式可以猜想,故而,
得,經(jīng)驗(yàn)證可知滿(mǎn)足上式.
下邊驗(yàn)證是否還有別解:
令,上式可化為,
利用韋達(dá)定理知此方程有一個(gè)正根與一個(gè)負(fù)根,
所以,此時(shí).
綜上,可得或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線C:1(a0,b0)的左右焦點(diǎn)分別為F1,F2,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)P在雙曲線的右支上,且滿(mǎn)足|F1F2|=2|OP|.若直線PF2與雙曲線C只有一個(gè)交點(diǎn),則雙曲線C的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=4sin(θ+).
(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于M,N兩點(diǎn),求△MON的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,已知直線l的參數(shù)方程為(t為參數(shù)),圓C的極坐標(biāo)方程是.
(1)求直線l與圓C的公共點(diǎn)個(gè)數(shù);
(2)在平面直角坐標(biāo)系中,圓C經(jīng)過(guò)伸縮變換得到曲線,設(shè)為曲線上一點(diǎn),求的最大值,并求相應(yīng)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:過(guò)點(diǎn)A,兩個(gè)焦點(diǎn)為(-1,0),(1,0)。
(Ⅰ)求橢圓C的方程;
(Ⅱ)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】自從新型冠狀病毒爆發(fā)以來(lái),全國(guó)范圍內(nèi)采取了積極的措施進(jìn)行防控,并及時(shí)通報(bào)各項(xiàng)數(shù)據(jù)以便公眾了解情況,做好防護(hù).以下是湖南省2020年1月23日-31日這9天的新增確診人數(shù).
日期 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
時(shí)間 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
新增確診人數(shù) | 15 | 19 | 26 | 31 | 43 | 78 | 56 | 55 | 57 |
經(jīng)過(guò)醫(yī)學(xué)研究,發(fā)現(xiàn)新型冠狀病毒極易傳染,一個(gè)病毒的攜帶者在病情發(fā)作之前通常有長(zhǎng)達(dá)14天的潛伏期,這個(gè)期間如果不采取防護(hù)措施,則感染者與一位健康者接觸時(shí)間超過(guò)15秒,就有可能傳染病毒.
(1)將1月23日作為第1天,連續(xù)9天的時(shí)間作為變量x,每天新增確診人數(shù)作為變量y,通過(guò)回歸分析,得到模型用于對(duì)疫情進(jìn)行分析.對(duì)上表的數(shù)據(jù)作初步處理,得到下面的一些統(tǒng)計(jì)量的值(部分?jǐn)?shù)據(jù)已作近似處理):,.根據(jù)相關(guān)數(shù)據(jù),求該模型的回歸方程(結(jié)果精確到0.1),并依據(jù)該模型預(yù)測(cè)第10天新增確診人數(shù).
(2)如果一位新型冠狀病毒的感染者傳染給他人的概率為0.3,在一次12人的家庭聚餐中,只有一位感染者參加了聚餐,記余下的人員中被感染的人數(shù)為,求最有可能(即概率最大)的值是多少.
附:對(duì)于一組數(shù)據(jù),…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,點(diǎn),是圓上一動(dòng)點(diǎn),點(diǎn)在線段上,點(diǎn)在半徑上,且滿(mǎn)足.
(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;
(2)設(shè)過(guò)點(diǎn)的直線與軌跡交于點(diǎn)(不在軸上),垂直于的直線交于點(diǎn),與軸交于點(diǎn),若,求點(diǎn)橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的圓心的坐標(biāo)為,且圓與直線:相切,過(guò)點(diǎn)的動(dòng)直線與圓相交于,兩點(diǎn),直線與直線的交點(diǎn)為.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)求的最小值;
(3)問(wèn):是否是定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com