已知等比數(shù)列{an}滿足.a(chǎn)1=2,S2=3
(1)求{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足a1=b1,an+bn-1=bn(n≥2),求數(shù)列{bn}的通項(xiàng)公式.
考點(diǎn):等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)已知條件求得公比q,則數(shù)列的通項(xiàng)公式可得.
(2)根據(jù)題意表示出bn-bn-1,進(jìn)而通過遞加法求得數(shù)列的通項(xiàng)公式.
解答: 解:(1)S2=a1+a2=2+2q=3,
∴q=
1
2
,
∴an=2•(
1
2
n-1=4•(
1
2
n
(2)a1=b1=2,
∵an+bn-1=bn,
∴bn-bn-1=an,=4•(
1
2
n,
∴(b2-b1)+(b3-b2)+…+(bn-bn-1)=bn-b1=4[
1
2
+(
1
2
2+…+(
1
2
n]=4•
1
2
•[1-(
1
2
)n]
1-
1
2
=4[1-(
1
2
n],
∴bn=2-4•(
1
2
n,(n≥2)
∴bn=
2,n=1
2-4•(
1
2
)n,n≥2
點(diǎn)評(píng):本題主要考查了等比數(shù)列的通項(xiàng)公式和求和公式的應(yīng)用.考查了學(xué)生對(duì)數(shù)列基礎(chǔ)公式的熟練記憶.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)g(x)=3x,h(x)=9x
(1)解方程:x+log3(2g(x)-8)=log3(h(x)+9);
(2)令p(x)=
g(x)
g(x)+
3
,q(x)=
3
h(x)+3
,求證:p(
1
2014
)+p(
2
2014
)+…+p(
2012
2014
)+p(
2013
2014
)=q(
1
2014
)+q(
2
2014
)+…+q(
2012
2014
)+q(
2013
2014

(3)若f(x)=
g(x+1)+a
g(x)+b
是實(shí)數(shù)集R上的奇函數(shù),且f(h(x)-1)+f(2-k•g(x))>0對(duì)任意實(shí)數(shù)x恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的極坐標(biāo)方程為
2
ρ=4sin(θ+
π
4
),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=3+t
y=1-2t
,(t為參數(shù))
(Ⅰ)將圓C的極坐標(biāo)方程化為直角坐標(biāo)方程,直線l的參數(shù)方程化為普通方程;
(Ⅱ)判斷直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓F:
x2
a2
-
y2
b2
=1(a>b>0)經(jīng)過D(2,0),E(1,
3
2
)兩點(diǎn).
(I)求橢圓F的方程;
(Ⅱ)若直線l:y=kx+m與F交于不同兩點(diǎn)A,B,點(diǎn)G是線段AB中點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),設(shè)射線OG交F于點(diǎn)Q,且
OQ
=2
OG

①證明:4m2=4k2+1;
②求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+4n(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若b1=3,且bn+1-bn=an(n∈N*),求數(shù)列{
1
bn
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓M與圓N交于A,B兩點(diǎn),以A為切點(diǎn)作兩圓的切線分別交圓M和圓N于C,D兩點(diǎn),延長延長DB交圓M于點(diǎn)E,延長CB交圓N于點(diǎn)F.已知BC=5,DB=10.
(1)求AB的長;         
(2)求
CF
DE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2cosx+2
3
sinx,1),
b
=(y,cosx),且
a
b

(1)將y表示成x的函數(shù)f(x),并求f(x)的最小正周期;
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若f(B)=3,
BA
BC
=
9
2
,且a+c=3+
3
,求邊長b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知作用于某一質(zhì)點(diǎn)的力F(x)=
x2,0≤x≤1
x+1,1<x≤2
(單位:N),試求力F(x)從x=0處運(yùn)動(dòng)到x=2處(單位:m)所做的功.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1=2Sn+1(n∈N*),等差數(shù)列{bn}中,b2=5,且公差d=2.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)是否存在正整數(shù)n,使得a1b1+a2b2+…+anbn>60n?若存在,求n的最小值,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案