【題目】在直角坐標(biāo)系中,直線經(jīng)過點,其傾斜角為,以原點為極點,以軸非負半軸為極軸,與直角坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系,設(shè)曲線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和極坐標(biāo)方程;
(2)若直線與曲線有公共點,求的取值范圍.
【答案】(1)普通方程為,極坐標(biāo)方程為 (2)
【解析】
(1)由得,代入,化簡即可求得曲線的普通方程,再結(jié)合,即可求解的曲線的極坐標(biāo)方程;
(2)設(shè)直線方程為,由直線與曲線有公共點可得圓心到直線距離,可解得,進而求得的取值范圍
(1)顯然,參數(shù),由得,
代入并整理,得,
將,代入,得,
即.
∴曲線的普通方程為,
極坐標(biāo)方程為.
(2)曲線的直角坐標(biāo)方程為,曲線是以為圓心,半徑為2的圓.
當(dāng)時,直線:與曲線沒有公共點,
當(dāng)時,設(shè)直線的方程為.
圓心到直線的距離為.
由,得.
∴,即的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)對x∈R均有f(x)+2f(﹣x)=mx﹣6,若f(x)≥lnx恒成立,則實數(shù)m的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合均為實數(shù)集的子集,記.
(1)已知,試用列舉法表示;
(2)設(shè),當(dāng)且時,曲線的焦距為,如果,,設(shè)中的所有元素之和為,求的值;
(3)在(2)的條件下,對于滿足,且的任意正整數(shù),不等式恒成立, 求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知是曲線:上的動點,將繞點順時針旋轉(zhuǎn)得到,設(shè)點的軌跡為曲線.以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線,的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,點,射線與曲線,分別相交于異于極點的兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點為,過點的直線(不與軸重合)與橢圓相交于,兩點,直線:與軸相交于點,過點作,垂足為D.
(1)求四邊形(為坐標(biāo)原點)面積的取值范圍;
(2)證明直線過定點,并求出點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,求曲線在點處的切線方程;
(2)當(dāng)時,求證:函數(shù)恰有兩個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的方程為.以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線C的參數(shù)方程和直線的直角坐標(biāo)方程;
(2)若直線與軸和y軸分別交于A,B兩點,P為曲線C上的動點,求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ) 求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)時,求函數(shù)在上最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,右頂點為,且過點,圓是以線段為直徑的圓,經(jīng)過點且傾斜角為的直線與圓相切.
(1)求橢圓及圓的方程;
(2)是否存在直線,使得直線與圓相切,與橢圓交于兩點,且滿足?若存在,請求出直線的方程,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com