20.已知f(x)=|ax-1|(a∈R),不等式f(x)≤2的解集是{x|-$\frac{1}{2}$≤x≤$\frac{3}{2}$}.
(1)求a的值;
(2)解不等式f(x)+f($\frac{x}{2}$-1)≥5.

分析 (1)由題意可得|ax-1|≤2,即有-1≤ax≤3,由已知不等式的解集可得a=2;
(2)原不等式即為|2x-1|+|x-3|≥5,討論當(dāng)x≥3時,當(dāng)x≤$\frac{1}{2}$時,當(dāng)$\frac{1}{2}$<x<3時,去掉絕對值,解不等式求并集即可得到所求解集.

解答 解:(1)不等式f(x)≤2的解集是{x|-$\frac{1}{2}$≤x≤$\frac{3}{2}$},
即為|ax-1|≤2,即有-1≤ax≤3,
則a>0,且a=2;
(2)f(x)+f($\frac{x}{2}$-1)≥5,
即為|2x-1|+|x-3|≥5,
當(dāng)x≥3時,2x-1+x-3≥5,即為3x≥9,可得x≥3;
當(dāng)x≤$\frac{1}{2}$時,1-2x+3-x≥5,即為-3x≥1,可得x≤-$\frac{1}{3}$;
當(dāng)$\frac{1}{2}$<x<3時,2x-1+3-x≥5,即為x≥3,可得x∈∅.
綜上可得,x≥3或x≤-$\frac{1}{3}$.
即解集為{x|x≥3或x≤-$\frac{1}{3}$}.

點評 本題考查絕對值不等式的解法,注意運用絕對值的含義和零點分區(qū)間,考查不等式的解法,以及運算能力和轉(zhuǎn)化思想的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)經(jīng)過點$E(\sqrt{3},1)$,離心率為$\frac{{\sqrt{6}}}{3}$,O為坐標(biāo)原點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若點P為橢圓C上一動點,點A(3,0)與點P的垂直平分線交y軸于點B,求|OB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在區(qū)間[0,π]上隨機(jī)地取一個數(shù)x,則事件“-1≤tanx≤$\sqrt{3}$”發(fā)生的概率為( 。
A.$\frac{7}{12}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.命題“?x>0,x2>0”的否定是( 。
A.?x>0,x2<0B.?x>0,x2≤0C.?x0>0,x2<0D.?x0>0,x2≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)是定義在R上的奇函數(shù),則f(0)=(  )
A.0B.1C.-1D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$\overrightarrow a=(4,-2),\overrightarrow b=(cosα,sinα)$且$\overrightarrow a⊥\overrightarrow b$,則$\frac{{{{sin}^3}α+{{cos}^3}α}}{sinα-cosα}$為( 。
A.2B.$\frac{9}{5}$C.3D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.將函數(shù)$y=cos(2x+\frac{π}{6})$圖象上的點$P(\frac{π}{4},t)$向右平移m(m>0)個單位長度得到點P',若P'位于函數(shù)y=cos2x的圖象上,則( 。
A.$t=-\frac{{\sqrt{3}}}{2}$,m的最小值為$\frac{π}{6}$B.$t=-\frac{{\sqrt{3}}}{2}$,m的最小值為$\frac{π}{12}$
C.$t=-\frac{1}{2}$,m的最小值為$\frac{π}{6}$D.$t=-\frac{1}{2}$,m的最小值為$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知等差數(shù)列{an}的首項為a1,公差為d,其前n項和為Sn,若直線y=a1x+m與在y軸上的截距為1的直線x+2y-d=0垂直,則數(shù)列{$\frac{1}{{S}_{n}}$}的前100項的和為$\frac{100}{101}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=sin(2x+$\frac{π}{4}$)(x∈[0,$\frac{9π}{8}$]),若方程f(x)=a恰好有三個根,分別為x1,x2,x3(x1<x2<x3),則x1+2x2+x3的值為( 。
A.πB.$\frac{3π}{4}$C.$\frac{3π}{2}$D.$\frac{5π}{4}$

查看答案和解析>>

同步練習(xí)冊答案