9.已知等差數(shù)列{an}的首項(xiàng)為a1,公差為d,其前n項(xiàng)和為Sn,若直線y=a1x+m與在y軸上的截距為1的直線x+2y-d=0垂直,則數(shù)列{$\frac{1}{{S}_{n}}$}的前100項(xiàng)的和為$\frac{100}{101}$.

分析 直線y=a1x+m與在y軸上的截距為1的直線x+2y-d=0垂直,可得${a}_{1}×(-\frac{1}{2})$=-1,$\fracpnnn3j5{2}$=1,解得a1,d.再利用等差數(shù)列的前n項(xiàng)和公式與“裂項(xiàng)求和”方法即可得出.

解答 解:∵直線y=a1x+m與在y軸上的截距為1的直線x+2y-d=0垂直,
∴${a}_{1}×(-\frac{1}{2})$=-1,$\fracnf7llxx{2}$=1,
解得a1=2,d=2.
∴Sn=2n+$\frac{n(n-1)}{2}×2$=n2+n.
∴$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴數(shù)列{$\frac{1}{{S}_{n}}$}的前100項(xiàng)的和=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{100}-\frac{1}{101})$
=1-$\frac{1}{101}$=$\frac{100}{101}$.
故答案為:$\frac{100}{101}$.

點(diǎn)評(píng) 本題考查了“裂項(xiàng)求和方法”、等差數(shù)列通項(xiàng)公式及其求和公式、相互垂直的直線斜率之間的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在區(qū)間[0,π]上隨機(jī)取一個(gè)數(shù)x,使sinx≥$\frac{\sqrt{3}}{2}$成立的概率$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=|ax-1|(a∈R),不等式f(x)≤2的解集是{x|-$\frac{1}{2}$≤x≤$\frac{3}{2}$}.
(1)求a的值;
(2)解不等式f(x)+f($\frac{x}{2}$-1)≥5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知O為坐標(biāo)原點(diǎn),F(xiàn)是雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點(diǎn),A,B分別為雙曲線C的左、右頂點(diǎn),P為雙曲線C上的一點(diǎn),且PF⊥x軸,過點(diǎn)A的直線l與線段PF交于M,與y軸交于點(diǎn)E,直線BM與y軸交于點(diǎn)N,若|OE|=3|ON|,則雙曲線C的離心率為( 。
A.$\frac{4}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)θ為鈍角,若sin(θ+$\frac{π}{3}$)=-$\frac{3}{5}$,則cosθ的值為$\frac{-4-3\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.2017年1月1日,作為貴陽市打造“千園之城”27個(gè)示范性公元之一的泉湖公園正式開園,元旦期間,為了活躍氣氛,主辦方設(shè)置了水上挑戰(zhàn)項(xiàng)目向全體市民開放,現(xiàn)從到公園游覽的市民中隨機(jī)抽取了60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計(jì)出100名市民中愿意接受挑戰(zhàn)和不愿意接受挑戰(zhàn)的男女生比例情況,具體數(shù)據(jù)如圖表:
(1)根據(jù)條件完成下列2×2列聯(lián)表,并判斷是否在犯錯(cuò)誤的概率不超過1%的情況下愿意接受挑戰(zhàn)與性別有關(guān)?
  愿意 不愿意 總計(jì)
 男生   
 女生   
 總計(jì)   
(2)現(xiàn)用分層抽樣的方法從愿意接受挑戰(zhàn)的市民中選取7名挑戰(zhàn)者,再?gòu)闹谐槿?人參加挑戰(zhàn),求抽取的2人中至少有一名男生的概率.
參考公式與數(shù)據(jù):
 P(K2≥k0 0.1 0.05 0.025 0.01
 k0 2.7063.841 5.024 6.635 
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定義在R上的函數(shù)f(x),滿足(x-1)f′(x)≤0,且y=f(x+1)為偶函數(shù),當(dāng)|x1-1|<|x2-1|時(shí),有( 。
A.f(x1)≥f(x2B.f(x1)=f(x2C.f(x1)>f(x2D.f(x1)≤f(x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(m,-4),若|$\overrightarrow{a}$||$\overrightarrow$|+$\overrightarrow{a}$•$\overrightarrow$=0,則實(shí)數(shù)m等于( 。
A.-4B.4C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.對(duì)數(shù)列{an},{bn},若區(qū)間[an,bn]滿足下列條件:
①$[{{a_{n+1}},{b_{n+1}}}]?[{{a_n},{b_n}}]({n∈{N^*}})$;
②$\lim_{n→+∞}({{b_n}-{a_n}})=0$;則[an,bn]為區(qū)間套,
下列可以構(gòu)成區(qū)間套的數(shù)列是( 。
A.${a_n}={({\frac{1}{2}})^n},{b_n}={({\frac{2}{3}})^n}$B.${a_n}={({\frac{1}{3}})^n},{b_n}=\frac{n}{{{n^2}+1}}$
C.${a_n}=\frac{n-1}{n},{b_n}=1+{({\frac{1}{3}})^n}$D.${a_n}=\frac{n+3}{n+2},{b_n}=\frac{n+2}{n+1}$

查看答案和解析>>

同步練習(xí)冊(cè)答案