【題目】在四棱錐中,底面ABCD是邊長(zhǎng)為6的菱形,且,平面ABCD,,F是棱PA上的一個(gè)動(dòng)點(diǎn),E為PD的中點(diǎn).
Ⅰ求證:.
Ⅱ若.
求PC與平面BDF所成角的正弦值;
側(cè)面PAD內(nèi)是否存在過(guò)點(diǎn)E的一條直線,使得該直線上任一點(diǎn)M與C的連線,都滿足平面BDF,若存在,求出此直線被直線PA、PD所截線段的長(zhǎng)度,若不存在,請(qǐng)明理由.
【答案】(Ⅰ)詳見解析;(Ⅱ).
【解析】
證明平面PAC即可得出;建立空間坐標(biāo)系,求出平面BDF的法向量,計(jì)算和的夾角的余弦值即可;取PF的中點(diǎn)G,證明平面,即可得出結(jié)論.
證明:平面ABCD,平面ABCD,
,
四邊形ABCD是菱形,
,
又,平面PAC,平面PAC,
平面PAC,
又平面PAC,
.
解:設(shè)AC,BD交于點(diǎn)O,以O為坐標(biāo)原點(diǎn),以OB,OC,平面ABCD過(guò)點(diǎn)O的垂線為坐標(biāo)軸建立空間直角坐標(biāo)系,
則0,,0,,,3,,,
,0,,,
設(shè)平面BDF的法向量為y,,則,即,
令可得,即2,,
,.
與平面BDF所成角的正弦值為,.
取PF的中點(diǎn)G,連接FG,CG,
,G分別是PD,PF的中點(diǎn),
,又平面BDF,平面BDF,
平面BDF,
,O分別是AG,AC的中點(diǎn),
,又平面BDF,平面BDF,
平面BDF,
又平面CEG,平面CEG,,
平面平面BDF,
側(cè)面PAD內(nèi)存在過(guò)點(diǎn)E的一條直線EG,使得該直線上任一點(diǎn)M與C的連線,
都滿足平而BDF,
此直線被直線PA、PD所截線段為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017高考新課標(biāo)Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過(guò)AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓:的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,橢圓的離心率是,的面積是.
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)直線與橢圓交于,兩點(diǎn)(異于點(diǎn)),若直線與直線的斜率之和為1,證明:直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,實(shí)數(shù),函數(shù),函數(shù).
(Ⅰ)令,當(dāng)時(shí),試討論函數(shù)在其定義域內(nèi)的單調(diào)性;
(Ⅱ)當(dāng)時(shí),令,是否存在實(shí)數(shù),使得對(duì)于函數(shù)定義域中的任意實(shí)數(shù),均存在實(shí)數(shù),有成立?若存在,求出實(shí)數(shù)的取值集合;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某區(qū)“創(chuàng)文明城區(qū)”簡(jiǎn)稱“創(chuàng)城”活動(dòng)中,教委對(duì)本區(qū)A,B,C,D四所高中校按各校人數(shù)分層抽樣調(diào)查,將調(diào)查情況進(jìn)行整理后制成如表:
學(xué)校 | A | B | C | D |
抽查人數(shù) | 50 | 15 | 10 | 25 |
“創(chuàng)城”活動(dòng)中參與的人數(shù) | 40 | 10 | 9 | 15 |
注:參與率是指:一所學(xué)!皠(chuàng)城”活動(dòng)中參與的人數(shù)與被抽查人數(shù)的比值
假設(shè)每名高中學(xué)生是否參與“創(chuàng)城”活動(dòng)是相互獨(dú)立的.
Ⅰ若該區(qū)共2000名高中學(xué)生,估計(jì)A學(xué)校參與“創(chuàng)城”活動(dòng)的人數(shù);
Ⅱ在隨機(jī)抽查的100名高中學(xué)生中,從A,C兩學(xué)校抽出的高中學(xué)生中各隨機(jī)抽取1名學(xué)生,求恰有1人參與“創(chuàng)城”活動(dòng)的概率;
Ⅲ若將表中的參與率視為概率,從A學(xué)校高中學(xué)生中隨機(jī)抽取3人,求這3人參與“創(chuàng)城”活動(dòng)人數(shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠DAB=60°,PD⊥底面ABCD,PD=DC=2,E,F,G分別是AB,PB,CD的中點(diǎn).
(1)求證:AC⊥PB;
(2)求證:GF∥平面PAD;
(3)求點(diǎn)G到平面PAB的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn),的距離之比為定值的點(diǎn)的軌跡是圓”.后來(lái),人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓.在平面直角坐標(biāo)系中,,,點(diǎn)滿足.設(shè)點(diǎn)的軌跡為,下列結(jié)論正確的是( )
A.的方程為
B.在上存在點(diǎn),使得
C.當(dāng),,三點(diǎn)不共線時(shí),射線是的平分線
D.在三棱錐中,面,且,,,該三棱錐體積最大值為12
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(I)討論的單調(diào)性;
(II)若恒成立,證明:當(dāng)時(shí),.
(III)在(II)的條件下,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在底面為正方形的四棱錐P—ABCD中,AB=2,PA=4,PB=PD=,AC與BD相交于點(diǎn)O,E,G分別為PD,CD中點(diǎn),
(1)求證:EO//平面PBC;
(2)設(shè)線段BC上點(diǎn)F滿足BC=3BF,求三棱錐E—OFG的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com