【題目】如圖所示,在底面為正方形的四棱錐P—ABCD中,AB=2,PA=4,PB=PD=,AC與BD相交于點O,E,G分別為PD,CD中點,
(1)求證:EO//平面PBC;
(2)設(shè)線段BC上點F滿足BC=3BF,求三棱錐E—OFG的體積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面ABCD是邊長為6的菱形,且,平面ABCD,,F是棱PA上的一個動點,E為PD的中點.
Ⅰ求證:.
Ⅱ若.
求PC與平面BDF所成角的正弦值;
側(cè)面PAD內(nèi)是否存在過點E的一條直線,使得該直線上任一點M與C的連線,都滿足平面BDF,若存在,求出此直線被直線PA、PD所截線段的長度,若不存在,請明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣2y+1=0和拋物線E:y2=2px(p>0),圓C與拋物線E的準(zhǔn)線交于M、N兩點,△MNF的面積為p,其中F是E的焦點.
(1)求拋物線E的方程;
(2)不過原點O的動直線l交該拋物線于A,B兩點,且滿足OA⊥OB,設(shè)點Q為圓C上任意一動點,求當(dāng)動點Q到直線l的距離最大時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的方程為.以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線C的參數(shù)方程和直線的直角坐標(biāo)方程;
(2)若直線與軸和y軸分別交于A,B兩點,P為曲線C上的動點,求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為F,過F點的直線交拋物線于不同的兩點A、B,且,點A關(guān)于軸的對稱點為,線段的中垂線交軸于點D,則D點的坐標(biāo)為
A. (2,0)B. (3,0)C. (4,0)D. (5,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為 (其中為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(Ⅰ)求C的普通方程和直線的傾斜角;
(Ⅱ)設(shè)點(0,2),和交于兩點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校隨機抽取部分男生測試立定跳遠(yuǎn),將成績整理得到頻率分布表如表,測試成績在220厘米以上(含220厘米)的男生定為“合格生”,成績在260厘米以上(含260厘米)的男生定為“優(yōu)良生”.
分組(厘米) | 頻數(shù) | 頻率 |
[180,200) | 0.10 | |
[200,220) | 15 | |
[220,240) | 0.30 | |
[240,260) | 0.30 | |
[260,280) | 0.20 | |
合計 | 1.00 |
(1)求參加測試的男生中“合格生”的人數(shù).
(2)從參加測試的“合格生”中,根據(jù)表中分組情況,按分層抽樣的方法抽取8名男生,再從這8名男生中抽取3名男生,記X表示3人中“優(yōu)良生”的人數(shù),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(a>b>0)的兩個焦點分別為F1,F2,離心率為,過F1的直線l與橢圓C交于M,N兩點,且△MNF2的周長為8.
(1)求橢圓C的方程;
(2)若直線y=kx+b與橢圓C分別交于A,B兩點,且OA⊥OB,試問點O到直線AB的距離是否為定值,證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com