解:(1)由f′(x)=

,把x=1代入得:f′(1)=1,
故直線l的斜率為1,切點坐標為(1,f(1)),即(1,0),
所以直線l的方程為:y=x-1,
∴直線l與y=g(x)的圖象相切等價于方程組

只有一解,
即方程

x
2-x+a+1=0有兩個相等實根,
∴△=1-4×

(a+1)=0,解得a=-

;
(2)由g′(x)=x,f(x+1)=ln(x+1),
得到:h(x)=ln(x+1)-x(x>-1),由h′(x)=

-1=-

,
令h′(x)>0,即

<0,解得:-1<x<0,
當x∈(-1,0)時,h(x)是增函數(shù).即h(x)的單調(diào)遞增區(qū)間為(-1,0);
(3)由(1)知g(x)=

x
2-

,令y
1=f(1+x
2)-g(x)=ln(1+x
2)-

x
2+

,y
2=k,
由y′
1=

-x=

,令y′
1=0,解得:x=0,-1,1
當x變化時,y′
1和y
1的變化關系如下表:

據(jù)此可知:當k=

時,方程有三解;
當k∈(

,ln2)時,方程有四解;
當k=ln2或k∈(-∞,

)時,方程有兩解;
當k∈(ln2,+∞)時,方程無解.
分析:(1)求出f(x)的導函數(shù),由切線l與函數(shù)f(x)圖象的切點的橫坐標為1,把x=1代入導函數(shù)中求出的導函數(shù)值即為切線l的斜率,把x=1代入f(x)中求出的函數(shù)值即為切點的縱坐標,進而得到切點的坐標,根據(jù)切點坐標和斜率寫出直線l的方程,又直線l與g(x)的圖象相切,聯(lián)立兩解析式,消去y得到關于x的一元二次方程,得到此方程的根的判別式等于0,列出關于a的方程,求出方程的解即可得到a的值;
(2)求出g(x)的導函數(shù),求出f(x+1),代入h(x)=f(x+1)-g′(x)中確定出h(x),求出h(x)的導函數(shù),令導函數(shù)大于0,求出x的取值范圍即為函數(shù)h(x)的單調(diào)增區(qū)間;
(3)把(1)中求出的a的值代入確定出g(x),求出f(1+x
2),設y
1等于方程的左邊,y
2等于方程的右邊,求出y
1的導函數(shù),令導函數(shù)等于0求出x的值,利用x的值分區(qū)間討論導函數(shù)的正負進而得到函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)的增減性得到函數(shù)的極大值和極小值,根據(jù)求出的極大值和極小值分區(qū)間即可得到方程解的個數(shù).
點評:此題考查學生會利用導數(shù)求曲線上過某點切線方程的斜率,會利用導函數(shù)的正負得到函數(shù)的單調(diào)區(qū)間,會利用導數(shù)研究函數(shù)的極值,是一道中檔題.