【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出直線的極坐標方程與曲線的直角坐標方程;
(2)已知與直線平行的直線過點,且與曲線交于兩點,試求.
【答案】(1)直線的極坐標方程為,曲線的直角坐標方程為;
(2).
【解析】
(1)先寫出直線的普通方程,再根據(jù)求出直線的極坐標方程,對等式兩邊同乘以,再結(jié)合寫出曲線的直角坐標方程;
(2)先寫出直線的一個參數(shù)方程,再根據(jù)參數(shù)的幾何意義求解.
解:(1)直線的參數(shù)方程可化為(為參數(shù)),
消去可得直線的普通方程為,即,
又∵,
∴直線的極坐標方程為,
由可得,即
∴曲線的直角坐標方程為;
(2)由(1)可知直線的傾斜角為,
∴直線的傾斜角也為,
又直線過點,
∴直線的參數(shù)方程為(為參數(shù)),
將其代入曲線的直角坐標方程可得,
設(shè)點對應(yīng)的參數(shù)分別為,
由韋達定理得,,
∴.
科目:高中數(shù)學 來源: 題型:
【題目】2020年寒假是特殊的寒假,因為疫情全體學生只能在家進行網(wǎng)上在線學習,為了研究學生在網(wǎng)上學習的情況,某學校在網(wǎng)上隨機抽取120名學生對于線上教育進行調(diào)查,其中男生與女生的人數(shù)之比為,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.
(1)完成列聯(lián)表,并回答能否有99%的把握認為對“線上教育是否滿意與性別有關(guān)”;
滿意 | 不滿意 | 總計 | |
男生 | |||
女生 | |||
合計 | 120 |
(2)從被調(diào)查中對線上教育滿意的學生中,利用分層抽樣抽取8名學生,再在8名學生中抽取2名學生,作線上學習的經(jīng)驗介紹,求其中抽取一名男生與一名女生的概率.
參考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.842 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點為拋物線的焦點,過點任作兩條互相垂直的直線,,分別交拋物線于,,,四點,,分別為,的中點.
(1)求證:直線過定點,并求出該定點的坐標;
(2)設(shè)直線交拋物線于,兩點,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應(yīng)點為,圓柱表面上的點在左視圖上的對應(yīng)點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為( )
A. B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知空間中兩條直線,所成的角為50°,為空間中給定的一個點,直線過點且與直線,所成的角都是,則下列判斷中正確的是( )
①當時,滿足題意的直線不存在;②當時,滿足題意的直線有且只有1條;③當時,滿足題意的直線有且只有2條;④當時,滿足題意的直線有且只有3條.
A.①②③B.①②④C.②③④D.①③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過橢圓的左頂點作斜率為2的直線,與橢圓的另一個交點為,與軸的交點為,已知.
(1)求橢圓的離心率;
(2)設(shè)動直線與橢圓有且只有一個公共點,且與直線相交于點,若軸上存在一定點,使得,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前n項和為,,若是公差不為0的等差數(shù)列,且.
(1)求數(shù)列的通項公式;
(2)證明:數(shù)列是等差數(shù)列;
(3)記,若存在,(),使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】稠環(huán)芳香烴化合物中有不少是致癌物質(zhì),比如學生鐘愛的快餐油炸食品中會產(chǎn)生苯并芘,它是由一個苯環(huán)和一個芘分子結(jié)合而成的稠環(huán)芳香烴類化合物,長期食用會致癌.下面是一組稠環(huán)芳香烴的結(jié)構(gòu)簡式和分子式:
名稱 | 萘 | 蒽 | 并四苯 | … | 并n苯 |
結(jié)構(gòu)簡式 | … | … | |||
分子式 | … | … |
由此推斷并十苯的分子式為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com