【題目】1979年,李政道博士給中國科技大學少年班出過一道智趣題:5只猴子分一堆桃子,怎么也不能分成5等份,只好先去睡覺,準備第二天再分,夜里1只猴子偷偷爬起來,先吃掉一個桃子,然后將其分成5等份,藏起自己的一份就去睡覺了;第2只猴子又爬起來,將剩余的桃子吃掉一個后,也將桃子分成5等份;藏起自己的一份睡覺去了;以后的3只猴子都先后照此辦理,問:最初至少有多少個桃子?最后至少剩下多少個桃子?
科目:高中數(shù)學 來源: 題型:
【題目】東莞市某高級中學在今年4月份安裝了一批空調(diào),關于這批空調(diào)的使用年限(單位:年, )和所支出的維護費用(單位:萬元)廠家提供的統(tǒng)計資料如下:
(1)請根據(jù)以上數(shù)據(jù),用最小二乘法原理求出維護費用關于的線性回歸方程;
(2)若規(guī)定當維護費用超過13.1萬元時,該批空調(diào)必須報廢,試根據(jù)(1)的結(jié)論預測該批空調(diào)使用年限的最大值.
參考公式:最小二乘估計線性回歸方程中系數(shù)計算公式:
, ,其中表示樣本均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克, 原料1千克.每桶甲產(chǎn)品的利潤是300元,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計劃中,要求每天消耗原料都不超過12千克.通過合理安排生產(chǎn)計劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤是__________元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù);
(2)設函數(shù),其中a∈(1,2),求函數(shù)g(x)在區(qū)間[1,e]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,圓C:x2+y2﹣8y+12=0,直線l:ax+y+2a=0.
(1)當a為何值時,直線l與圓C相切;
(2)當直線l與圓C相交于A、B兩點,且AB=2 時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且, ,在數(shù)列中, , , .
(1)求證: 是等比數(shù)列;
(2)若,求數(shù)列的前項和;
(3)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如表:
廣告費用x(萬元) | 4 | 2 | 3 | 5 |
銷售額y(萬元) | 49 | 26 | 39 | 54 |
根據(jù)上表可得回歸方程 = x+ 中的 為9.4,據(jù)此模型預報廣告費用為6萬元時銷售額為( )
A.63.6萬元
B.67.7萬元
C.65.5萬元
D.72.0萬元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知且,直線: ,圓: .
(Ⅰ)若,請判斷直線與圓的位置關系;
(Ⅱ)求直線傾斜角的取值范圍;
(Ⅲ)直線能否將圓分割成弧長的比值為的兩段圓。繛槭裁?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com