15.已知F1、F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左、右焦點,過F2作x軸的垂線與雙曲線交于A、B兩點,G是△ABF1的重心,且$\overrightarrow{GA}$•$\overrightarrow{{F}_{1}B}$=0,則雙曲線的離心率為$\sqrt{3}$.

分析 設F1(-c,0),F(xiàn)2(c,0),將x=c代入雙曲線的方程,可得A,B的坐標,再由三角形的重心坐標公式,求得G的坐標,得到$\overrightarrow{GA}$,$\overrightarrow{{F}_{1}B}$的坐標,運用向量數(shù)量積的坐標表示,可得a,b,c的方程,由離心率公式,解方程可得.

解答 解:設F1(-c,0),F(xiàn)2(c,0),
令x=c代入雙曲線的方程,可得y2=b2•($\frac{{c}^{2}}{{a}^{2}}$-1)=$\frac{^{4}}{{a}^{2}}$,
解得y=±$\frac{^{2}}{a}$,
可設A(c,$\frac{^{2}}{a}$),B(c,-$\frac{^{2}}{a}$),
由重心坐標公式可得xG=$\frac{-c+c+c}{3}$=$\frac{1}{3}$c;
yG=0,
即G($\frac{1}{3}$c,0),$\overrightarrow{GA}$=($\frac{2}{3}$c,$\frac{^{2}}{a}$),$\overrightarrow{{F}_{1}B}$=(2c,-$\frac{^{2}}{a}$),
由$\overrightarrow{GA}$•$\overrightarrow{{F}_{1}B}$=$\frac{2}{3}$c•2c+(-$\frac{^{2}}{a}$)•($\frac{^{2}}{a}$)=0,
即4a2c2=3b4,
即為2ac=$\sqrt{3}$b2=$\sqrt{3}$(c2-a2),
由e=$\frac{c}{a}$,可得$\sqrt{3}$e2-2e-$\sqrt{3}$=0,
解得e=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點評 本題考查雙曲線的離心率的求法,注意運用重心坐標公式和向量的數(shù)量積的坐標表示,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知拋物線C:y2=2px(p>1)的焦點為F,直線y=m與y軸的交點為P,與C的交點為Q(x0,y0),且$\frac{|QF|}{|PQ|}$=p.
(1)當x0+p取得最小值時,求p的值;
(2)當x0=1時,若直線l與拋物線C相交于A,B兩點,與圓M:(x-n)2+y2=1相交于D,E兩點,O為坐標原點,OA⊥OB,試問:是否存在實數(shù)n,使得|DE|的長為定值?若存在,求出n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在△ABC中,角A,B,C的對邊分別為a,b,c,若a:b:c=4:5:6,則$\frac{sin2A}{sinC}$=( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.圓x2+y2-4x-4y=0上的點到直線x+y-6=0的最大距離和最小距離的差是( 。
A.$\sqrt{2}$B.$3\sqrt{2}$C.$2\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$•cosx的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知集合A={x|${log}_{\frac{1}{2}}(x+2)<0$},集合B={x|(x-a)(x-b)<0},若“a=-3”是“A∩B≠∅”的充分條件,則實數(shù)b的取值范圍是b>-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知m、n是兩條不同的直線,α、β、γ是三個不同的平面,下列命題中正確的是(  )
A.若α⊥β,β⊥γ,則α∥γ
B.若m?α,n?β,m∥n,則α∥β
C.若m,n是異面直線,m?α,m∥β,n?β,n∥α,則α∥β
D.平面α內(nèi)有不共線的三點到平面β的距離相等,則α∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設集合A={0,1,2,3},集合B={-1,1},則A∩B=( 。
A.{1}B.{-1,1}C.{-1,0}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.△ABC中,角A,B,C的對邊分別為a,b,c,且角A,B,C滿足A<B<C,a2+c2-b2=ac.
(1)求角B的大小;
(2)若$tanA=\frac{{\sqrt{2}}}{2},c=\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

同步練習冊答案