【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1 , F2 , 且|F1F2|=2,點(diǎn)(1, )在橢圓C上.
(1)求橢圓C的方程;
(2)過(guò)F1的直線l與橢圓C相交于A,B兩點(diǎn),且△AF2B的面積為 ,求以F2為圓心且與直線l相切的圓的方程.

【答案】
(1)解:設(shè)橢圓的方程為 ,由題意可得:

橢圓C兩焦點(diǎn)坐標(biāo)分別為F1(﹣1,0),F(xiàn)2(1,0).

∴a=2,又c=1,b2=4﹣1=3,

故橢圓的方程為


(2)解:當(dāng)直線l⊥x軸,計(jì)算得到:

, ,不符合題意.

當(dāng)直線l與x軸不垂直時(shí),設(shè)直線l的方程為:y=k(x+1),

,消去y得(3+4k2)x2+8k2x+4k2﹣12=0

顯然△>0成立,設(shè)A(x1,y1),B(x2,y2),

,

又圓F2的半徑 ,

所以 ,

化簡(jiǎn),得17k4+k2﹣18=0,

即(k2﹣1)(17k2+18)=0,解得k=±1

所以, ,

故圓F2的方程為:(x﹣1)2+y2=2.


【解析】(1)先設(shè)出橢圓的方程,根據(jù)題設(shè)中的焦距求得c和焦點(diǎn)坐標(biāo),根據(jù)點(diǎn)(1, )到兩焦點(diǎn)的距離求得a,進(jìn)而根據(jù)b= 求得b,得到橢圓的方程.(2)先看當(dāng)直線l⊥x軸,求得A,B點(diǎn)的坐標(biāo)進(jìn)而求得△AF2B的面積與題意不符故排除,進(jìn)而可設(shè)直線l的方程為:y=k(x+1)與橢圓方程聯(lián)立消y,設(shè)A(x1 , y1),B(x2 , y2),根據(jù)韋達(dá)定理可求得x1+x2和x1x2 , 進(jìn)而根據(jù)表示出|AB|的距離和圓的半徑,求得k,最后求得圓的半徑,得到圓的方程.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解圓的標(biāo)準(zhǔn)方程(圓的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程),還要掌握橢圓的標(biāo)準(zhǔn)方程(橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于命題的說(shuō)法錯(cuò)誤的是(
A.命題“若x2﹣3x+2=0,則x=1”的逆否命題為“若x≠1,則x2﹣3x+2≠0”
B.“a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件
C.若命題P:n∈N,2n>1000,則﹣P:n∈N,2n≤1000
D.命題“x∈(﹣∞,0),2x<3x”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】C.[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系 中,已知直線 (l為參數(shù))與曲線 為參數(shù))相交于 兩點(diǎn),求線段 的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓O1:(x﹣2)2+y2=16和圓O2:x2+y2=r2(0<r<2),動(dòng)圓M與圓O1、圓O2都相切,切圓圓心M的軌跡為兩個(gè)橢圓,這兩個(gè)橢圓的離心率分別為e1 , e2(e1>e2),則e1+2e2的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為(

A.4
B.9
C.7
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,| |= ,| |=t,若P點(diǎn)是△ABC所在平面內(nèi)一點(diǎn),且 = + ,當(dāng)t變化時(shí), 的最大值等于(
A.﹣2
B.0
C.2
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x﹣1)ex+ax2有兩個(gè)零點(diǎn). (Ⅰ)求a的取值范圍;
(Ⅱ)設(shè)x1 , x2是f(x)的兩個(gè)零點(diǎn),證明x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái)我國(guó)電子商務(wù)行業(yè)迎來(lái)篷布發(fā)展的新機(jī)遇,2015年雙11期間,某購(gòu)物平臺(tái)的銷(xiāo)售業(yè)績(jī)高達(dá)918億人民幣.與此同時(shí),相關(guān)管理部門(mén)推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
(1)是否可以在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
(2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的5次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為隨機(jī)變量X: ①求對(duì)商品和服務(wù)全好評(píng)的次數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學(xué)期望和方差.

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P( ,1)和橢圓C: + =1.
(1)設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1 , F2 , 試求△PF1F2的周長(zhǎng)及橢圓的離心率;
(2)若直線l: x﹣2y+m=0(m≠0)與橢圓C交于兩個(gè)不同的點(diǎn)A,B,設(shè)直線PA與PB的斜率分別為k1 , k2 , 求證:k1+k2=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案