已知
(1)化簡
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050855074476.png)
;
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050855089344.png)
是第三象限角,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240508551051128.png)
的值;
(3)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050855120995.png)
的值。
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050855136808.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050855136808.png)
(3)1
試題分析:(1)利用誘導(dǎo)公式化簡得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050855167636.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240508551831103.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240508551981126.png)
,從而得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050855136808.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240508552301147.png)
,再利用誘導(dǎo)公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050855261817.png)
得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240508552762186.png)
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050855292168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240508553082713.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240508553231229.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240508551831103.png)
且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050855354310.png)
時第三象限的角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240508551981126.png)
所以
(3)因為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240508552301147.png)
且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050855261817.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240508554322142.png)
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:單選題
若0<α<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052959783421.png)
,-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052959783421.png)
<β<0,cos(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052959830396.png)
+α)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052959846327.png)
,cos(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052959830396.png)
-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052959877452.png)
)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052959893419.png)
,則cos(α+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052959877452.png)
)=( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在平面坐標系
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052033175416.png)
中,直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052033190923.png)
與圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052033222550.png)
相交于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052033237423.png)
,(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052033253300.png)
在第一象限)兩個不同的點,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052033268905.png)
則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052033284725.png)
的值是 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051156533297.png)
的頂點與原點重合,始邊與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051156549266.png)
軸的非負半軸重合,終邊在直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051156564482.png)
上,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051156580635.png)
等于( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752439819.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752455863.png)
,其中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752471424.png)
,函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752486620.png)
的最小正周期為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752502316.png)
.
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752517445.png)
的單調(diào)遞增區(qū)間;
(Ⅱ)在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752533543.png)
中,角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752564301.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752595313.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752595313.png)
的對邊分別為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752627283.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752642301.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752658250.png)
.且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752689716.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752705511.png)
,求角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752564301.png)
、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752736309.png)
、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050752595313.png)
的大�。�
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050627934421.png)
<α<π,0<β<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050627934421.png)
,tanα=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050627950385.png)
,cos(β-α)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050627965400.png)
,求sinβ的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044742626828.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044742642778.png)
的值是
.
查看答案和解析>>