3.已知極坐標(biāo)的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合.曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3cosφ}\\{y=2sinφ}\end{array}\right.$(φ為參數(shù)),直線l的極坐標(biāo)方程是ρ(cosθ+2sinθ)=15.若點(diǎn)P、Q分別是曲線C和直線l上的動(dòng)點(diǎn),則P、Q兩點(diǎn)之間距離的最小值是( 。
A.$\sqrt{10}$B.2$\sqrt{3}$C.2$\sqrt{5}$D.$\sqrt{21}$

分析 設(shè)P(3cosφ,2sinφ)(φ為參數(shù)),直線l的極坐標(biāo)方程化為普通方程:x+2y-15=0.則點(diǎn)P到直線l的距離d=$\frac{|3cosφ+4sinφ-15|}{\sqrt{5}}$=$\frac{|5sin(φ+θ)-15|}{\sqrt{5}}$,利用三角函數(shù)的單調(diào)性即可得出.

解答 解:設(shè)P(3cosφ,2sinφ)(φ為參數(shù)),
直線l的極坐標(biāo)方程是ρ(cosθ+2sinθ)=15化為普通方程:x+2y-15=0.
則點(diǎn)P到直線l的距離d=$\frac{|3cosφ+4sinφ-15|}{\sqrt{5}}$=$\frac{|5sin(φ+θ)-15|}{\sqrt{5}}$
≥$\frac{|5-15|}{\sqrt{5}}$=2$\sqrt{5}$,當(dāng)且僅當(dāng)sin(φ+θ)=1時(shí)取等號(hào),arctanθ=$\frac{3}{4}$.
故選:C.

點(diǎn)評(píng) 本題考查了橢圓的參數(shù)方程、極坐標(biāo)方程化為直角坐標(biāo)方程、點(diǎn)到直線的距離公式、三角函數(shù)求值,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.記不等式x2+x-6<0的解集為集合A,函數(shù)y=lg(x-a)的定義域?yàn)榧螧.
(1)當(dāng)a=-1時(shí),求A∩B;
(2)若“x∈A”是“x∈B”的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知2+$\frac{2}{3}$=22×$\frac{2}{3}$,3+$\frac{3}{8}$=32×$\frac{3}{8}$,4+$\frac{4}{15}$=42×$\frac{4}{15}$,…若9+$\frac{a}$=92×$\frac{a}$(a、b為正整數(shù)),則a+b等于(  )
A.89B.90C.98D.99

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知直線l交拋物線y2=-3x于A、B兩點(diǎn),且$\overrightarrow{OA}$•$\overrightarrow{OB}$=4(O是坐標(biāo)原點(diǎn)),設(shè)l與x軸的非正半軸交于點(diǎn)F,F(xiàn)、F′分別是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦點(diǎn).若在雙曲線的右支上存在一點(diǎn)P,使得2|$\overrightarrow{PF}$|=3|$\overrightarrow{PF'}$|,則a的取值范圍是[$\frac{4}{5}$,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=lnx-a2x2+ax(a∈R)在區(qū)間(1,+∞)上是減函數(shù),則實(shí)數(shù)a的取值范圍是(-∞,-$\frac{1}{2}$]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,右頂點(diǎn)為A,上頂點(diǎn)為B,坐標(biāo)系原點(diǎn)O到直線AB的距離為$\frac{2\sqrt{21}}{7}$,橢圓的離心率是$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)如果動(dòng)直線l:y=kx+n與橢圓C有且只有一個(gè)公共點(diǎn),點(diǎn)F1,F(xiàn)2在直線l上的正投影分別是P,Q,求四邊形F1PQF2面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.曲線$\left\{\begin{array}{l}{x=co{s}^{2}θ}\\{y=2si{n}^{2}θ}\end{array}\right.$(θ為參數(shù))的普通方程是2x+y-2=0,x∈[0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.學(xué)校為測(cè)評(píng)班級(jí)學(xué)生對(duì)任課教師的滿意度,采用“100分制”打分的方式來計(jì)分,規(guī)定滿意度不低于98分,則評(píng)價(jià)該教師為“優(yōu)秀”,現(xiàn)從某班學(xué)生中隨機(jī)抽取10名,如圖莖葉圖記錄了他們對(duì)某教師的滿意度分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉);
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)求從這10人中隨機(jī)選取3人,至多有1人評(píng)價(jià)該教師是“優(yōu)秀”的概率;
(3)以這10人的樣本數(shù)據(jù)來估計(jì)整個(gè)班級(jí)的總體數(shù)據(jù),若從該班任選3人,記ξ表示抽到評(píng)價(jià)該教師為“優(yōu)秀”的人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)f(x)=$\left\{\begin{array}{l}{sin2x,x<0}\\{k-1,x≥0}\end{array}\right.$,問當(dāng)k為何值時(shí),函數(shù)f(x)在x=0點(diǎn)連續(xù)?

查看答案和解析>>

同步練習(xí)冊(cè)答案