【題目】已知某食品廠需要定期購(gòu)買食品配料,該廠每天需要食品配料200千克,配料的價(jià)格為1.8元/千克,每次購(gòu)買配料需支付運(yùn)費(fèi)236元,每次購(gòu)買來(lái)的配料還需支付保管費(fèi)用,其標(biāo)準(zhǔn)如下:7天以內(nèi)(含7天),無(wú)論重量多少,均按10元/天支付;超出7天以外的天數(shù),根據(jù)實(shí)際剩余配料的重量,以每天0.03元/千克支付.

(1)當(dāng)9天購(gòu)買一次配料時(shí),求該廠用于配料的保管費(fèi)用是多少元?

2)設(shè)該廠天購(gòu)買一次配料,求該廠在這天中用于配料的總費(fèi)用(元)關(guān)于的函數(shù)關(guān)系式,并求該廠多少天購(gòu)買一次配料才能使平均每天支付的費(fèi)用最少?

【答案】理解1:(1)88元;(2)答案見(jiàn)解析.

理解2(1)78;(2)答案見(jiàn)解析.

【解析】本題主要考查對(duì)二次函數(shù)的最值,二次函數(shù)等知識(shí)點(diǎn)的理解和掌握,能根據(jù)題意列出算式是解此題的關(guān)鍵。

1)當(dāng)9天購(gòu)買一次時(shí),該廠用于配料的保管費(fèi)用

2)先分析得到,然后設(shè)該廠x天購(gòu)買一次配料平均每天支付的費(fèi)用為

結(jié)合導(dǎo)數(shù)和均值不等式得到最值。

解:()當(dāng)9天購(gòu)買一次時(shí),該廠用于配料的保管費(fèi)用

………………………………………………2

(Ⅱ)(1)當(dāng)時(shí),…………………4

(2)當(dāng)時(shí),

……………………………………………6

…………………………………………………7

設(shè)該廠x天購(gòu)買一次配料平均每天支付的費(fèi)用為

……………………………………………8

當(dāng)時(shí)上的減函數(shù).

當(dāng)且僅當(dāng)時(shí),有最小值(元)

當(dāng)時(shí)=≥393

當(dāng)且僅當(dāng)時(shí)取等號(hào)

(注:兩段上的最值錯(cuò)一個(gè)扣一分)。

當(dāng)時(shí)有最小值393…………………………12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M:x2+(y﹣4)2=4,點(diǎn)P是直線l:x﹣2y=0上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作圓M的切線PA、PB,切點(diǎn)為A、B.
(1)當(dāng)切線PA的長(zhǎng)度為2 時(shí),求點(diǎn)P的坐標(biāo);
(2)若△PAM的外接圓為圓N,試問(wèn):當(dāng)P運(yùn)動(dòng)時(shí),圓N是否過(guò)定點(diǎn)?若存在,求出所有的定點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由;
(3)求線段AB長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的圓錐中,OP是圓錐的高,AB是底面圓的直徑,點(diǎn)C是弧AB的中點(diǎn),E是線段AC的中點(diǎn),D是線段PB的中點(diǎn),且PO=2,OB=1.

(1)試在PB上確定一點(diǎn)F,使得EF∥面COD,并說(shuō)明理由;
(2)求點(diǎn)A到面COD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有以下命題:
①如果向量 與任何向量不能構(gòu)成空間向量的一組基底,那么 , 的關(guān)系是不共線;
②O,A,B,C為空間四點(diǎn),且向量 , 不構(gòu)成空間的一個(gè)基底,則點(diǎn)O,A,B,C一定共面;
③已知向量 , 是空間的一個(gè)基底,則向量 + , 也是空間的一個(gè)基底;
④△ABC中,A>B的充要條件是sinA>sinB.
其中正確的命題個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列中, ,且對(duì)任意正整數(shù)都成立,數(shù)列的前項(xiàng)和為

1)若,且,求;

2)是否存在實(shí)數(shù),使數(shù)列是公比為1的等比數(shù)列,且任意相鄰三項(xiàng)按某順序排列后成等差數(shù)列,若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由;

3)若,求.(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,定點(diǎn),點(diǎn)為圓上的動(dòng)點(diǎn),點(diǎn)在直線上,點(diǎn)在直線上,且滿足.

(1)求點(diǎn)的軌跡的方程;

(2)過(guò)點(diǎn)作斜率為的直線,與曲線交于兩點(diǎn), 是坐標(biāo)原點(diǎn),是否存在這樣的直線,使得,若存在,求出直線的斜率的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】先后隨機(jī)投擲2枚正方體骰子,其中x表示第1枚骰子出現(xiàn)的點(diǎn)數(shù),y表示第2枚骰子出現(xiàn)的點(diǎn)數(shù),
(1)求點(diǎn)P(x,y)在直線y=x﹣1上的概率;
(2)求點(diǎn)P(x,y)滿足y2<4x的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,圓C:x2+y2﹣8y+12=0,直線l:ax+y+2a=0.
(1)當(dāng)a為何值時(shí),直線l與圓C相切;
(2)當(dāng)直線l與圓C相交于A、B兩點(diǎn),且AB=2 時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家為了了解某新產(chǎn)品使用者的年齡情況,現(xiàn)隨機(jī)調(diào)査100 位使用者的年齡整理后畫出的頻率分布直方圖如圖所示.

(1)求100名使用者中各年齡組的人數(shù),并利用所給的頻率分布直方圖估計(jì)所有使用者的平均年齡;

(2)若已從年齡在的使用者中利用分層抽樣選取了6人,再?gòu)倪@6人中選出2人,求這2人在不同的年齡組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案