【題目】定義:對(duì)于數(shù)列,如果存在常數(shù),使對(duì)任意正整數(shù),總有成立,那么我們稱數(shù)列為“﹣擺動(dòng)數(shù)列”.
①若,,,則數(shù)列_____“﹣擺動(dòng)數(shù)列”,_____“﹣擺動(dòng)數(shù)列”(回答是或不是);
②已知“﹣擺動(dòng)數(shù)列”滿足,.則常數(shù)的值為_____.
【答案】不是 是
【解析】
①由是關(guān)于的遞增數(shù)列,可知不滿足定義,由可知正負(fù)交替出現(xiàn),易求出的值;②先對(duì)取特殊值確定的取值范圍,再根據(jù)對(duì)任意的正整數(shù)都成立,求出的值.
①由知道是遞增數(shù)列,故不存在滿足定義的
又因?yàn)?/span>可知正負(fù)數(shù)值交替出現(xiàn),故時(shí)滿足定義
②因?yàn)閿?shù)列是“﹣擺動(dòng)數(shù)列”,故時(shí)有
可求得:
又因?yàn)槭箤?duì)任意正整數(shù),總有成立,即有成立
則
所以,,…,
同理,,…,
所以,即,解得,即
同理,解得,即
綜上,
本題正確結(jié)果:不是;是;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求使方程存在兩個(gè)實(shí)數(shù)解時(shí),的取值范圍;
(2)設(shè),函數(shù),.若對(duì)任意,總存在,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(I)求函數(shù)的對(duì)稱軸方程;
(II)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,然后再向左平移個(gè)單位,得到函數(shù)的圖象.若分別是△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,a=2,c=4,且,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓,分別為其左、右焦點(diǎn),過的直線與此橢圓相交于兩點(diǎn),且的周長(zhǎng)為8,橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)在平面直角坐標(biāo)系中,已知點(diǎn)與點(diǎn),過的動(dòng)直線(不與軸平行)與橢圓相交于兩點(diǎn),點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn).求證:
(i)三點(diǎn)共線.
(ii).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有4家直營(yíng)店, , , ,現(xiàn)需將6箱貨物運(yùn)送至直營(yíng)店進(jìn)行銷售,各直營(yíng)店出售該貨物以往所得利潤(rùn)統(tǒng)計(jì)如下表所示.根據(jù)此表,該公司獲得最大總利潤(rùn)的運(yùn)送方式有
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的離心率為,且過點(diǎn).
求橢圓的標(biāo)準(zhǔn)方程;
設(shè)直線l經(jīng)過點(diǎn)且與橢圓C交于不同的兩點(diǎn)M,N試問:在x軸上是否存在點(diǎn)Q,使得直線QM與直線QN的斜率的和為定值?若存在,求出點(diǎn)Q的坐標(biāo)及定值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,,,,,分別是,的中點(diǎn),在上且.
(I)求證:;
(II)求直線與平面所成角的正弦值;
(III)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為陜西博物館收藏的國(guó)寶——唐·金筐寶鈿團(tuán)花紋金杯,杯身曲線內(nèi)收,玲瓏嬌美,巧奪天工,是唐代金銀細(xì)作的典范之作.該杯型幾何體的主體部分可近似看作是雙曲線的右支與直線,,圍成的曲邊四邊形繞軸旋轉(zhuǎn)一周得到的幾何體,如圖分別為的漸近線與,的交點(diǎn),曲邊五邊形繞軸旋轉(zhuǎn)一周得到的幾何體的體積可由祖恒原理(祖恒原理:冪勢(shì)既同,則積不容異).意思是:兩等高的幾何體在同高處被截得的兩截面面積均相等,那么這兩個(gè)幾何體的體積相等,那么這兩個(gè)幾何體的體積相等),據(jù)此求得該金杯的容積是_____.(杯壁厚度忽略不計(jì))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若,且方程在內(nèi)有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com