【題目】已知橢圓C:的離心率為,且過點.
求橢圓的標準方程;
設(shè)直線l經(jīng)過點且與橢圓C交于不同的兩點M,N試問:在x軸上是否存在點Q,使得直線QM與直線QN的斜率的和為定值?若存在,求出點Q的坐標及定值,若不存在,請說明理由.
【答案】(1);(2)見解析
【解析】
由橢圓C:的離心率為,且過點,列方程給,求出,,由此能求出橢圓的標準方程;假設(shè)存在滿足條件的點,設(shè)直線l的方程為,由,得,由此利用韋達定理、直線的斜率,結(jié)合已知條件能求出在x軸上存在點,使得直線QM與直線QN的斜率的和為定值1.
橢圓C:的離心率為,且過點.
,解得,,
橢圓的標準方程為.
假設(shè)存在滿足條件的點,
當直線l與x軸垂直時,它與橢圓只有一個交點,不滿足題意,
直線l的斜率k存在,設(shè)直線l的方程為,
由,得,
設(shè),,
則,,
,
要使對任意實數(shù)k,為定值,則只有,
此時,,
在x軸上存在點,使得直線QM與直線QN的斜率的和為定值1.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,一條準線方程為過橢圓的上頂點A作一條與x軸、y軸都不垂直的直線交橢圓于另一點P,P關(guān)于x軸的對稱點為Q.
求橢圓的方程;
若直線AP,AQ與x軸交點的橫坐標分別為m,n,求證:mn為常數(shù),并求出此常數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有以下判斷:①與表示同一函數(shù);②函數(shù)的圖像與直線最多有一個交點;③不是函數(shù);④若點在的圖像上,則函數(shù)的圖像必過點.其中正確的判斷有___________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國慶70周年慶典磅礴而又歡快的場景,仍歷歷在目.已知慶典中某省的游行花車需要用到某類花卉,而該類花卉有甲、乙兩個品種,花車的設(shè)計團隊對這兩個品種進行了檢測.現(xiàn)從兩個品種中各抽測了10株的高度,得到如下莖葉圖.下列描述正確的是( )
A.甲品種的平均高度大于乙品種的平均高度,且甲品種比乙品種長的整齊
B.甲品種的平均高度大于乙品種的平均高度,但乙品種比甲品種長的整齊
C.乙品種的平均高度大于甲品種的平均高度,且乙品種比甲品種長的整齊
D.乙品種的平均高度大于甲品種的平均高度,但甲品種比乙品種長的整齊
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為緩減人口老年化帶來的問題,中國政府在2016年1月1日作出全國統(tǒng)一實施全面的“二孩”政策,生“二孩”是目前中國比較流行的元素某調(diào)查機構(gòu)對某校學生做了一個是否同意父母生“二孩”抽樣調(diào)查,該調(diào)查機構(gòu)從該校隨機抽查了100名不同性別的學生,調(diào)查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”現(xiàn)已得知100人中同意父母生“二孩”占,統(tǒng)計情況如表:
性別屬性 | 同意父母生“二孩” | 反對父母生“二孩” | 合計 |
男生 | 10 | ||
女生 | 30 | ||
合計 | 100 |
請補充完整上述列聯(lián)表;
根據(jù)以上資料你是否有把握,認為是否同意父母生“二孩”與性別有關(guān)?請說明理由.
參考公式與數(shù)據(jù):,其中
k |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)對任意的均有則稱函數(shù)具有性質(zhì)
(Ⅰ)判斷下面兩個函數(shù)是否具有性質(zhì)并說明理由.
①②
(Ⅱ)若函數(shù)具有性質(zhì),且
求證:對任意有
(Ⅲ)在(Ⅱ)的條件下,是否對任意均有若成立,給出證明;若不成立,給出反例.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com