【題目】已知斜三棱柱的所有棱長都相等,且.
(1)求證:;
(2)直線與直線所成角的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】某市有一特色酒店由一些完全相同的帳篷構成.每座帳篷的體積為立方米,且分上下兩層,其中上層是半徑為(單位:米)的半球體,下層是半徑為米,高為米的圓柱體(如圖).經測算,上層半球體部分每平方米建造費用為2千元,下方圓柱體的側面、隔層和地面三個部分平均每平方米建造費用為3千元,設每座帳篷的建造費用為千元.
參考公式:球的體積,球的表面積,其中為球的半徑.
(1)求關于的函數(shù)解析式,并指出該函數(shù)的定義域;
(2)當半徑為何值時,每座帳篷的建造費用最小,并求出最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校共有學生15 000人,其中男生10 500人,女生4500人.為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).
(1)應收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個樣本數(shù)據(jù),得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計該校學生每周平均體育運動時間超過4小時的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有95%的把握認為“該校學生的每周平均體育運動時間與性別有關”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“搜索指數(shù)”是網民通過搜索引擎,以每天搜索關鍵詞的次數(shù)為基礎所得到的統(tǒng)計指標.“搜索指數(shù)”越大,表示網民對該關鍵詞的搜索次數(shù)越多,對該關鍵詞相關的信息關注度也越高.下圖是2017年9月到2018年2月這半年中,某個關鍵詞的搜索指數(shù)變化的走勢圖.
根據(jù)該走勢圖,下列結論正確的是( )
A. 這半年中,網民對該關鍵詞相關的信息關注度呈周期性變化
B. 這半年中,網民對該關鍵詞相關的信息關注度不斷減弱
C. 從網民對該關鍵詞的搜索指數(shù)來看,去年10月份的方差小于11月份的方差
D. 從網民對該關鍵詞的搜索指數(shù)來看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的幾何體中,四邊形為正方形,AD∥B,平面ABC⊥平面BC,AB=AC=,AD=1,∠ABC=45°。
(1)求證:AB⊥CD;
(2)求點C到平面D的距離。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的離心率為,且過點.
求橢圓的標準方程;
設直線l經過點且與橢圓C交于不同的兩點M,N試問:在x軸上是否存在點Q,使得直線QM與直線QN的斜率的和為定值?若存在,求出點Q的坐標及定值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢園C: +=1(a>b>0)的左、右焦點分別為F1,F2.且橢圓C過點(,-),離心率e=;點P在橢圓C 上,延長PF1與橢圓C交于點Q,點R是PF2中點.
(I )求橢圓C的方程;
(II )若O是坐標原點,記△QF1O與△PF1R的面積之和為S,求S的最大值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足a1=m,an+1= (k∈N*,r∈R),其前n項和為.
(1)當m與r滿足什么關系時,對任意的n∈N*,數(shù)列{an}都滿足an+2=an?
(2)對任意實數(shù)m,r,是否存在實數(shù)p與q,使得{a2n+1+p}與{a2n+q}是同一個等比數(shù)列.若存在,請求出p,q滿足的條件;若不存在,請說明理由;
(3)當m=r=1時,若對任意的n∈N*,都有Sn≥λan,求實數(shù)λ的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com