設(shè)曲線y=x2在點(a,a2)處的切線與直線x+2y+a=0垂直,則a的值為( 。
A、1
B、
1
2
C、-
1
2
D、-1
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:先利用導(dǎo)數(shù)求出在切點處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義和兩直線垂直的條件即可求出切線的斜率.從而問題解決.
解答: 解:f′(x)=2x,
∵曲線在x=a處的切線與直線x+2y+a=0互相垂直,
∴f′(a)•(-
1
2
)=-1,即f′(a)=2,即2a=2,
解得:a=1.
故選A.
點評:本題主要考查垂直直線的斜率關(guān)系、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點切線方程等基礎(chǔ)知識.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x3+1在x=1處的切線方程是( 。
A、x=1
B、y=3x-1
C、y=2x-2
D、y=4x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

log
3
27的值是(  )
A、3B、-3C、6D、-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l的傾斜角為α,sinα=
2
2
,若P(4,2)在直線l上,則直線l的方程( 。
A、x-y-2=0,或x+y-6=0
B、x-y-1=0,或x+y-3=0
C、x+y-2=0,或x-y-6=0
D、
2
x-y-2=0,或
2
x+y-6=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),其部分圖象如圖所示,且直線y=A與曲線y=f(x)(-
π
24
≤x≤
11π
24
)所圍成的封閉圖形的面積為π,則f(
π
8
)+f(
8
)+f(
8
)+…+f(
2013π
8
)(即
2013
i=1
f(
i•π
8
))的值為( 。
A、1B、-1C、0D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+2x+a
x
在[1,+∞)上單調(diào)遞增,且對任意x∈[1,+∞),f(x)>0恒成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z滿足(1+i)z=2i(i為虛數(shù)單位),則z的共軛復(fù)數(shù)
.
z
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡cos2013°的結(jié)果是( 。
A、sin33°
B、-sin33°
C、cos33°
D、-cos33°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)滿足f(2-x)=f(2+x),且圖象在y軸上的截距為0,最小值為-1,求函數(shù)f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案