精英家教網 > 高中數學 > 題目詳情
定義R上的奇函數f(x)滿足f(x+
5
2
)=-
1
f(x)
,若f(1)≥1,f(2014)=
t+3
t-3
,則實數t的取值范圍為
 
考點:函數的周期性,函數奇偶性的性質
專題:函數的性質及應用
分析:根據條件確定函數的周期性,利用函數周期性和奇偶性之間的關系即可得到結論.
解答: 解:∵f(x+
5
2
)=-
1
f(x)

f(x+5)=-
1
f(x+
5
2
)
=f(x)
,即函數的周期是5,
則f(2014)=f(2015-1)=f(-1)=-f(1)≤-1,
即f(2014)=
t+3
t-3
≤-1,
t+3
t-3
+1=
2t
t-3
≤0,
則0≤t<3,
故答案為:[0,3)
點評:本題主要考查函數函數值的計算,利用函數奇偶性和條件求出函數的周期性是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

將水注入錐形容器中,其速度為4m3/min,設錐形容器的高為8m,頂口直徑為6m,求當水深為5m時,水面上升的速度.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在直角梯形ABCD中,∠ABC=∠DAB=90°,AD=3,BC=2,AB=
3
,E、F為AD上的兩個三等分點,G、H分別為線段AB,BC的中點,將△ABE沿直線BE翻折成△A1BE,使平面A1BE⊥平面BCDE.
(1)求證:A1D∥平面FGH;
(2)直線A1D與平面A1BE所成角;
(3)過點A1作平面α與線段BC交于點J,使得平面α垂直于BC,求CJ的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

在(
x
+
a
x
7的展開式中含有-7x2,則a2=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{
1
an
}是等差數列,若ana2n+a2na3n+a3nan=arccos
1
2
,ana2na3n=arccos(-
1
2
)(n為正整數),則a2n的值是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
C
x
28
=
C
3x-8
28
,則x=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

4個人排成一排,其中甲和乙都站在邊上的概率為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

下面命題正確的序號是
 

①一位母親記錄了兒子3~9歲的身高,由此建立的身高與年齡的回歸模型為
y
=7.19x+73.93,用這個模型預測這個孩子10歲時的身高,則身高一定是145.83cm
②設有一個回歸方程為
y
=2-1.5則變量x增加一個單位時,y平均減少1.5個單位③結構圖反應事物的邏輯關系而不是流程圖中的先后順序關系.
④若x∈(-∞,1),則函數y=
x2-2x+2
2x-2
有最小值1
⑤對一切滿足|x|+|y|≤1的實數x,y,不等式|2x-3y+
3
2
|+|y-1|+|2y-x-3|≤a恒成立,則實數a的最小值為
23
2

查看答案和解析>>

科目:高中數學 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

同步練習冊答案