一個(gè)半徑大于2的扇形,其周長C=10,面積S=6,求這個(gè)扇形的半徑r和圓心角α的弧度數(shù).
考點(diǎn):扇形面積公式
專題:計(jì)算題,三角函數(shù)的求值
分析:由扇形的周長C=10,面積S=6,能夠求出l=4,r=3,由此能求出扇形圓心角的弧度數(shù).
解答: 解:∵扇形的周長C=10,面積S=6,
∴2r+l=10,
1
2
lr=6,
∵r>2,
∴l(xiāng)=4,r=3,
∴扇形圓心角的弧度數(shù)α=
l
r
=
4
3
點(diǎn)評:本題考查扇形的面積公式和周長公式的求法,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=ex在點(diǎn)A(0,1)處的切線為( 。
A、y=x+1
B、y=1
C、y=ex+1
D、y=
1
lne
x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=4x3-2ax+a.
(1)a=1時(shí),求函數(shù)的極值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過點(diǎn)P(-3,6)的直線l與圓x2+y2=25相交于A,B兩點(diǎn),且|AB|=8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法求證以下命題:若a>0,b>0,a3+b3=2,求證:a+b≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a1=1,a3=7.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式.
(Ⅱ)設(shè)bn=an•2 an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=6cos2
ωx
2
+
3
sinωx-3(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B、C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(1)求ω的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若f(x0)=
8
3
5
,且x0=∈(-
10
3
2
3
),求f(x0+1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)斜率為k1的直線l1與橢圓
x2
2
+y2=1交于不同的A、B兩點(diǎn),直線y=k2x與直線l1的交點(diǎn)為M,(k1≠k2,且k1≠0).
(Ⅰ)若點(diǎn)M為弦AB的中點(diǎn),求k1k2的值;
(Ⅱ)把題設(shè)中的橢圓一般化為
x2
a2
+
y2
b2
=1(a>0,b>0,a≠b),其他條件不變
(i)根據(jù)(Ⅰ)的運(yùn)算結(jié)果,寫出一個(gè)關(guān)于k1k2的一般性結(jié)論,并判斷與證明它的逆命題是否為真命題;
(ii)根據(jù)以上探究,在雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)中寫出類似結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(-
π
2
π
2
),β∈(0,π),求使等式sin(3π-α)=
2
cos(
π
2
-β),
3
cos(-α)=-
2
cos(π+β)同時(shí)成立的角α與β.

查看答案和解析>>

同步練習(xí)冊答案