【題目】已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為﹣3.
(1)求f(x)的解析式;
(2)求過點A(2,2)的切線方程.

【答案】
(1)解:函數(shù)f(x)=ax3+bx2+cx的導(dǎo)數(shù)為f'(x)=3ax2+2bx+c,

依題意 ,

又f'(0)=﹣3即c=﹣3

∴a=1,b=0,

∴f(x)=x3﹣3x


(2)解:設(shè)切點為(x0,x03﹣3x0),

∵f'(x)=3x2﹣3∴切線的斜率為f'(x0)=3x02﹣3,

∴切線方程為y﹣(x03﹣3x0)=(3x02﹣3)(x﹣x0),

又切線過點A(2,2),

∴2﹣(x03﹣3x0)=(3x02﹣3)(2﹣x0),

∴2x03﹣6x02+8=0,即為2(x0+1)(x0﹣2)2=0,

解得x0=﹣1或2,

可得過點A(2,2)的切線斜率為0或9,

即有過點A(2,2)的切線方程為y﹣2=0或y﹣2=9(x﹣2),

即為y﹣2=0或9x﹣y﹣16=0


【解析】(1)由函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為﹣3,求導(dǎo),可得±1是f′(x)=0的兩根,且f′(0)=﹣3,解方程組即可求得,a,b,c的值,從而求得f(x)的解析式;(2)設(shè)切點,求切線方程,得到2=﹣2x03+6x02﹣6,解方程可得x0 , 運用點斜式方程,進(jìn)而得到所求切線的方程.
【考點精析】解答此題的關(guān)鍵在于理解基本求導(dǎo)法則的相關(guān)知識,掌握若兩個函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x﹣2x , 若對任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,則實數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】PM2.5是指懸浮在空氣中的空氣動力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,根據(jù)現(xiàn)行國家標(biāo)準(zhǔn)GB3095﹣2012,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75毫克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo).從某自然保護(hù)區(qū)2012年全年每天的PM2.5監(jiān)測值數(shù)據(jù)中隨機地抽取10天的數(shù)據(jù)作為樣本,監(jiān)測值頻數(shù)如表所示:

PM2.5日均值
(微克/立方米)

[25,35]

(35,45]

(45,55]

(55,65]

(65,75]

(75,85]

頻數(shù)

3

1

1

1

1

3


(1)從這10天的PM2.5日均值監(jiān)測數(shù)據(jù)中,隨機抽取3天,求恰有1天空氣質(zhì)量達(dá)到一級的概率;
(2)從這10天的數(shù)據(jù)中任取3天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列;
(3)以這10天的PM2.5日均值來估計一年的空氣質(zhì)量狀況,則一年(按366天算)中平均有多少天的空氣質(zhì)量達(dá)到一級或二級.(精確到整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】Sn表示等差數(shù)列{an}的前n項的和,且S4=S9 , a1=﹣12
(1)求數(shù)列的通項an及Sn
(2)求和Tn=|a1|+|a2|+…+|an|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=x+sin|x|,x∈[﹣π,π]的大致圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=2an﹣2,數(shù)列{bn}滿足b1=1,且bn+1=bn+2.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前2n項和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0),短軸長2,兩焦點分別為F1 , F2 , 過F1的直線交橢圓C于M,N兩點,且△F2MN的周長為8.

(1)求橢圓C的方程;
(2)直線l與橢圓C相交于A,B點,點D為橢圓C上一點,四邊形AOBD為矩形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年3月29日,中國自主研制系全球最大水陸兩棲飛機AG600將于2017年5月計劃首飛,AG600飛機的用途很多,最主要的是森林滅火、水上救援、物資運輸、海洋探測、根據(jù)災(zāi)情監(jiān)測情報部門監(jiān)測得知某個時間段全國有10起災(zāi)情,其中森林滅火2起,水上救援3起,物資運輸5起,現(xiàn)從10起災(zāi)情中任意選取3起.

(1)求三種類型災(zāi)情中各取到1個的概率;

(2)設(shè)表示取到的森林滅火的數(shù)目,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,a1+a3=10,d=3.令bn= ,數(shù)列{bn}的前n項和為Tn
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn;
(3)是否存在正整數(shù)m,n(1<m<n),使得T1 , Tm , Tn成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案