【題目】公歷日為我國傳統(tǒng)清明節(jié),清明節(jié)掃墓我們都要獻(xiàn)鮮花,某種鮮花的價(jià)格會(huì)隨著需求量的增加而上升.一個(gè)批發(fā)市場向某地商店供應(yīng)這種鮮花,具體價(jià)格統(tǒng)計(jì)如下表所示

日供應(yīng)量(束)

單位(元)

(I)根據(jù)上表中的數(shù)據(jù)進(jìn)行判斷,函數(shù)模型哪一個(gè)更適合于體現(xiàn)日供應(yīng)量與單價(jià)之間的關(guān)系;(給出判斷即可,不必說明理由)

(II)根據(jù)(I)的判斷結(jié)果以及參考數(shù)據(jù),建立關(guān)于的回歸方程;

(III)該地區(qū)有個(gè)商店,其中個(gè)商店每日對這種鮮花的需求量在束以下,個(gè)商店每日對這種鮮花的需求量在束以上,則從這個(gè)商店個(gè)中任取個(gè)進(jìn)行調(diào)查,求恰有個(gè)商店對這種鮮花的需求量在束以上的概率.

參考公式及相關(guān)數(shù)據(jù):對于一組數(shù)據(jù),...,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.

【答案】(I)選擇;(II);(III)

【解析】

I)根據(jù)表中數(shù)據(jù)可得合適的回歸方程.

(II)對兩邊同取對數(shù),令,,得,利用參考數(shù)據(jù)及公式可計(jì)算該線性回歸方程從而得到要求的非線性回歸方程.

III)利用枚舉法可求概率.

(Ⅰ)根據(jù)表中數(shù)據(jù)可知,選擇作為日供應(yīng)量與單價(jià)之間的回歸方程更合適.

(II)對兩邊同取對數(shù)得,.

,,得,

又因?yàn)?/span>,所以,,即.

故所求的回歸方程為.

(III)由題已知,個(gè)商店每日對這種鮮花的需求量在束以下,記為,,,個(gè)商店對這種鮮花的需求量在束以上,記為,則任取個(gè)商店,所有的基本事件為,,,,,,,,個(gè),其中滿足條件的有個(gè).

故所求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)有,兩個(gè)分廠生產(chǎn)某種產(chǎn)品,規(guī)定該產(chǎn)品的某項(xiàng)質(zhì)量指標(biāo)值不低于130的為優(yōu)質(zhì)品.分別從,兩廠中各隨機(jī)抽取100件產(chǎn)品統(tǒng)計(jì)其質(zhì)量指標(biāo)值,得到如圖頻率分布直方圖:

(1)根據(jù)頻率分布直方圖,分別求出分廠的質(zhì)量指標(biāo)值的眾數(shù)和中位數(shù)的估計(jì)值;

(2)填寫列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為這兩個(gè)分廠的產(chǎn)品質(zhì)量有差異?

優(yōu)質(zhì)品

非優(yōu)質(zhì)品

合計(jì)

合計(jì)

(3)(i)從分廠所抽取的100件產(chǎn)品中,利用分層抽樣的方法抽取10件產(chǎn)品,再從這10件產(chǎn)品中隨機(jī)抽取2件,已知抽到一件產(chǎn)品是優(yōu)質(zhì)品的條件下,求抽取的兩件產(chǎn)品都是優(yōu)質(zhì)品的概率;

(ii)將頻率視為概率,從分廠中隨機(jī)抽取10件該產(chǎn)品,記抽到優(yōu)質(zhì)品的件數(shù)為,求的數(shù)學(xué)期望.

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),一個(gè)焦點(diǎn)為

1)求橢圓的方程;

2)若直線軸交于點(diǎn),與橢圓交于兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定圓,過定點(diǎn)的直線交圓兩點(diǎn).

1)若,求直線的斜率;

2)求面積的取值范圍;

3)若圓內(nèi)一點(diǎn)的坐標(biāo)是,且過點(diǎn)的直線交圓兩點(diǎn),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在側(cè)棱垂直于底面的三棱柱中,,,為側(cè)面的對角線的交點(diǎn),,分別是中點(diǎn)

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,滿足();數(shù)列為等差數(shù)列.且,

1)求數(shù)列的通項(xiàng)公式;

2)若為數(shù)列的前n項(xiàng)和,求滿足不等式n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定點(diǎn),常數(shù),動(dòng)點(diǎn),設(shè),,且

1)求動(dòng)點(diǎn)的軌跡方程;

2)設(shè)直線與點(diǎn)的軌跡交于,兩點(diǎn),問是否存在實(shí)數(shù)使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語文、數(shù)學(xué)、英語,為必考科目:“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計(jì)六門考試科目.某高中從高一年級(jí)2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.

(1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);

(2)學(xué)校計(jì)劃在高二上學(xué)期開設(shè)選修中的“物理”和“歷史”兩個(gè)科目,為了了解學(xué)生對這兩個(gè)科目的選課情況,對在(1)的條件下抽取到的名學(xué)生講行問卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

性別

選擇物理

選擇歷史

總計(jì)

男生

50

女生

30

總計(jì)

(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再從這6名學(xué)生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.

參考公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一元線性同余方程組問題最早可見于中國南北朝時(shí)期(公元世紀(jì))的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”問題,原文如下:有物不知數(shù),三三數(shù)之剩二,五五數(shù)之剩三,問物幾何?即,一個(gè)整數(shù)除以三余二,除以五余三,求這個(gè)整數(shù).設(shè)這個(gè)整數(shù)為,當(dāng)時(shí),符合條件的共有( )

A. 個(gè)B. 個(gè)C. 個(gè)D. 個(gè)

查看答案和解析>>

同步練習(xí)冊答案