【題目】函數(shù)是實數(shù)集上的奇函數(shù),當時,
(1)求的值和函數(shù)的表達式;
(2)求方程在上的零點個數(shù).
【答案】(1); (2)方程在上有3個零點.
【解析】
(1)利用函數(shù)的奇偶性的性質,轉化求解.利用函數(shù)的奇偶性,求解函數(shù)解析式即可.
(2)因為f(2)=log22+2-3=0,所以方程f(x)=0在區(qū)間(0,+∞)上有解x=2,又方程f(x)=0可化為log2x=3-x,設函數(shù)g(x)=log2x,h(x)=3-x,證明方程g(x)=h(x)在區(qū)間(0,+∞)上只有一個解即可.又函數(shù)是實數(shù)集上的奇函數(shù),所以方程在區(qū)間上有解,且,所以方程在上有3個零點.
(1)由題知,函數(shù)是實數(shù)集上的奇函數(shù),
所以,即.(2分)
又函數(shù)是實數(shù)集上的奇函數(shù),所以.(3分)
當時,所以,
所以,即.
所以;
(2)易知在區(qū)間上為增函數(shù),
因為由零點存在定理,可知方程上有唯一解.
又函數(shù)是實數(shù)集上的奇函數(shù),所以方程在區(qū)間上有解,
且,所以方程在上有3個零點.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.
(I)請將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關系式;
(II)從兩家公司各隨機選取一名推銷員,對他們過去100天的銷售情況進行統(tǒng)計,得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請回答下面問題:
某大學畢業(yè)生擬到兩家公司中的一家應聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.
【答案】(I)見解析; (Ⅱ)見解析.
【解析】分析:(I)依題意可得甲公司一名推銷員的工資與銷售件數(shù)的關系是一次函數(shù)的關系式,而乙公司是分段函數(shù)的關系式,由此解得;(Ⅱ)分別根據(jù)條形圖求得甲、乙公司一名推銷員的日工資的分布列,從而可分別求得數(shù)學期望,進而可得結論.
詳解:(I)由題意得,甲公司一名推銷員的日工資 (單位:元) 與銷售件數(shù)的關系式為: .
乙公司一名推銷員的日工資 (單位: 元) 與銷售件數(shù)的關系式為:
(Ⅱ)記甲公司一名推銷員的日工資為 (單位: 元),由條形圖可得的分布列為
122 | 124 | 126 | 128 | 130 | |
0.2 | 0.4 | 0.2 | 0.1 | 0.1 |
記乙公司一名推銷員的日工資為 (單位: 元),由條形圖可得的分布列為
120 | 128 | 144 | 160 | |
0.2 | 0.3 | 0.4 | 0.1 |
∴
∴僅從日均收入的角度考慮,我會選擇去乙公司.
點睛:求解離散型隨機變量的數(shù)學期望的一般步驟為:
第一步是“判斷取值”,即判斷隨機變量的所有可能取值,以及取每個值所表示的意義;
第二步是“探求概率”,即利用排列組合,枚舉法,概率公式,求出隨機變量取每個值時的概率;
第三步是“寫分布列”,即按規(guī)范形式寫出分布列,并注意用分布列的性質檢驗所求的分布列或某事件的概率是否正確;
第四步是“求期望值”,一般利用離散型隨機變量的數(shù)學期望的定義求期望的值
【題型】解答題
【結束】
19
【題目】如圖,在四棱錐中,底面為菱形, 平面, , , , 分別是, 的中點.
(1)證明: ;
(2)設為線段上的動點,若線段長的最小值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線: ,曲線: (為參數(shù)),以坐標原點為極點, 軸正半軸為極軸,建立極坐標系.
(Ⅰ)求曲線, 的極坐標方程;
(Ⅱ)曲線: (為參數(shù), , )分別交, 于, 兩點,當取何值時, 取得最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(為自然對數(shù)的底數(shù)),.
(1)當時,求函數(shù)的極小值;
(2)當時,關于的方程有且只有一個實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com