(本小題滿分15分)

如圖,四邊形為矩形,點的坐標(biāo)分別為,點上,坐標(biāo)為,橢圓分別以、為長、短半軸,是橢圓在矩形內(nèi)部的橢圓。阎本與橢圓弧相切,且與相交于點

(Ⅰ)當(dāng)時,求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)圓在矩形內(nèi)部,且與和線段EA都相切,若直線將矩形分成面積相等的兩部分,求圓M面積的最大值.


解:(1)解:設(shè)橢圓的方程為.   k*s5*u

消去y.  …………………3分

由于直線l與橢圓相切,,

化簡得,          ①    

當(dāng)時,

則橢圓的標(biāo)準(zhǔn)方程為.                  ………………………6分

(2)由題意知,,

于是的中點為.   

因為將矩形分成面積相等的兩部分,所以過點,

,亦即.         ② 

由①②解得,故直線的方程為     ………………9分

.

因為圓與線段相切,所以可設(shè)其方程為.

因為圓在矩形及其內(nèi)部,所以      ④    

相切,且圓上方,所以,即.

代入④得  

所以圓面積最大時,,這時,圓面積的最大值為.………15分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分15分)

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,試分別解答以下兩小題.

(。┤舨坏仁對任意的恒成立,求實數(shù)的取值范圍;

(ⅱ)若是兩個不相等的正數(shù),且,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分15分).

已知、分別為橢圓

上、下焦點,其中也是拋物線的焦點,

在第二象限的交點,且

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點P(1,3)和圓,過點P的動直線與圓相交于不同的兩點A,B,在線段AB取一點Q,滿足:,)。求證:點Q總在某定直線上。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分15分)

如圖已知,橢圓的左、右焦點分別為、,過的直線與橢圓相交于A、B兩點。

(Ⅰ)若,且,求橢圓的離心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本小題滿分15分)若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域為,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;

(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題

(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:

(1)第1次抽到理科題的概率;

(2)第1次和第2次都抽到理科題的概率;

(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率

 

 

查看答案和解析>>

同步練習(xí)冊答案