如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=
1
2
PA,點(diǎn)O,D分別是AC,PC的中點(diǎn),OP⊥底面ABC.
(1)求證OD∥平面PAB;
(2)求直線OD與平面PBC所成角的正弦值的大小.
考點(diǎn):直線與平面所成的角,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(1)由此能求出OD∥PA,PA?平面PAB,OD不包含于平面PAB,OD∥平面PAB.
(2)由已知得OA=OB=OC,取BC中點(diǎn)E,連結(jié)PE,作OF⊥PE于F,連結(jié)DF,∠ODF是OD與平面PBC所成的角.OD與平面PBC所成的角正弦值.
解答: (1)證明:∵O、D分別為AC、PC的中點(diǎn),
∴OD∥PA,又PA?平面PAB,OD不包含于平面PAB,
∴OD∥平面PAB.(6分)
(2)解:∵AB⊥BC,OA=OC,∴OA=OB=OC,
又∵OP⊥平面ABC,∴PA=PB=PC.
取BC中點(diǎn)E,連結(jié)PE,則BC⊥平面POE.
作OF⊥PE于F,連結(jié)DF,則OF⊥平面PBC,
∴∠ODF是OD與平面PBC所成的角.
在Rt△ODF中,sin∠ODF=
OF
OD
=
210
30

∴OD與平面PBC所成的角正弦值為
210
30
.(12分)
點(diǎn)評(píng):本題考查直線與平面平行的證明,考查直線與平面所成角的正弦值的求法,是中檔題,解題時(shí)要注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+a
x2+2
(x∈R).
(1)寫出函數(shù)y=f(x)的奇偶性;
(2)當(dāng)x>0時(shí),是否存實(shí)數(shù)a,使v=f(x)的圖象在函數(shù)g(x)=
2
x
圖象的下方,若存在,求α的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體AC1中,M,N分別是A1A和B1B的中點(diǎn),則異面直線CM和D1N所成的角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y)在圓(x+2)2+y2=3上,則
y
x
的最小值為( 。
A、-
3
3
B、-
3
C、
3
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
x
lnx
,f(x)=g(x)-ax.
(Ⅰ)求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù),求實(shí)數(shù)a的最小值;
(Ⅲ)若函數(shù)h(x)=g(x)-bx2恰有兩個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(θ+
π
4
)=3,則sin2θ-2cos2θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<
π
2
,且y=f(x)的最大值為2,其圖象相鄰兩對(duì)稱軸間的距離為2,并過點(diǎn)(1,2).
(1)求φ;
(2)計(jì)算f(1)+f(2)+…+f(2014)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A、B、C分別為橢圓
x2
a2
+
y2
b2
=1(a>b>0)的頂點(diǎn)與焦點(diǎn),若∠ABC=90°,
求該橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是( 。
A、ac<bc⇒a<b
B、a<b⇒lga<lgb
C、
1
a
1
b
⇒a>b
D、
a
b
⇒a<b

查看答案和解析>>

同步練習(xí)冊(cè)答案