【題目】已知函數(shù).
(1)若有極值0,求實(shí)數(shù),并確定該極值為極大值還是極小值;
(2)在(1)的條件下,當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)見解析(2)
【解析】試題分析:(1)由極值定義得必有解,所以,且,根據(jù)導(dǎo)數(shù)可得函數(shù)先減后增,且最小值為,解得實(shí)數(shù),最后根據(jù)導(dǎo)函數(shù)符號(hào)變化規(guī)律確定該極值為極大值還是極小值;(2)不等式恒成立問題,一般利用變量分離轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問題: 利用導(dǎo)數(shù)研究函數(shù)單調(diào)性(遞增),再根據(jù)羅比特法則求最小值,即得實(shí)數(shù)的取值范圍.
試題解析:解:(Ⅰ) .
①若, , 在上單調(diào)遞增,無極值,不符合題意;
②若,令,得,
當(dāng)時(shí), , 在上單調(diào)遞減;
當(dāng)時(shí), , 在上單調(diào)遞增.
所以,當(dāng)時(shí), 取到極小值, ,即.
令,則,
當(dāng)時(shí), , 單調(diào)遞減;當(dāng)時(shí), , 單調(diào)遞增.
又,所以有唯一解.
(Ⅱ)據(jù)(Ⅰ),,當(dāng)時(shí), 恒成立,
即()恒成立.
令(),則,
令(),則,
, (當(dāng)且僅當(dāng)時(shí)取“=”).
①當(dāng)時(shí), , 在單調(diào)遞增,
所以,即,
即,所以在單調(diào)遞增,
所以,所以,
所以,即恒成立.
②當(dāng)時(shí), 是增函數(shù), ,
所以,故在單調(diào)遞增,
所以,即,
所以在單調(diào)遞增,所以,
所以,即恒成立.
③當(dāng)時(shí), 是增函數(shù), ,
當(dāng)時(shí), , ,
所以,則,使得,
當(dāng)時(shí), , 在遞減,
此時(shí),即, ,
所以在遞減, ,不符合題意.
綜上所述, 的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè).
(1)求的單調(diào)區(qū)間;
(2)已知,若對(duì)所有,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為,直線與拋物線交于兩點(diǎn),過這兩點(diǎn)分別作拋物線的切線,且這兩條切線相交于點(diǎn).
(1)若的坐標(biāo)為,求的值;
(2)設(shè)線段的中點(diǎn)為,點(diǎn)的坐標(biāo)為,過的直線與線段為直徑的圓相切,切點(diǎn)為,且直線與拋物線交于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知指數(shù)函數(shù)y=g(x)滿足:g(2)=4,定義域?yàn)镽的函數(shù)f(x)=是奇函數(shù).
(1)確定y=g(x)的解析式;
(2)求m,n的值;
(3)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點(diǎn),已知PA⊥AC,PA=6,BC=8,DF=5.求證:
(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m,n為兩條不同的直線,α,β為兩個(gè)不同的平面,則下列命題中正確的是( 。
A.mα,nα,m∥β,n∥βα∥β
B.α∥β,mα,nβ,m∥n
C.m⊥α,m⊥nn∥α
D.m∥n,n⊥αm⊥α
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題,其中m,n,l為直線,α,β為平面
①mα,nα,m∥β,n∥βα∥β;
②設(shè)l是平面α內(nèi)任意一條直線,且l∥βα∥β;
③若α∥β,mα,nβm∥n;
④若α∥β,mαm∥β.
其中正確的是( 。
A.①②
B.②③
C.②④
D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)五邊形中,
,將沿折到的位置,得到四棱錐,如圖(2),點(diǎn)為線段的中點(diǎn),且平面.
(1)求證:平面平面;
(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com