【題目】如圖放置的邊長為1的正方形沿軸滾動,點恰好經(jīng)過原點.設頂點的軌跡方程是,則對函數(shù)有下列判斷:①函數(shù)是偶函數(shù);②對任意的,都有;③函數(shù)在區(qū)間上單調(diào)遞減;④函數(shù)的值域是;⑤.其中判斷正確的序號是__________.
【答案】①②⑤
【解析】
根據(jù)正方形的運動,得到點P的軌跡方程,然后根據(jù)函數(shù)的圖象和性質(zhì)分別進行判斷即可.
當﹣2≤x≤﹣1,P的軌跡是以A為圓心,半徑為1的圓,
當﹣1≤x≤1時,P的軌跡是以B為圓心,半徑為的圓,
當1≤x≤2時,P的軌跡是以C為圓心,半徑為1的圓,
當3≤x≤4時,P的軌跡是以A為圓心,半徑為1的圓,
∴函數(shù)的周期是4.
因此最終構(gòu)成圖象如下:
①,根據(jù)圖象的對稱性可知函數(shù)y=f(x)是偶函數(shù),故①正確;
②,由圖象即分析可知函數(shù)的周期是4.
即f(x+4)=f(x),即f(x+2)=f(x﹣2),故②正確;
③,函數(shù)y=f(x)在區(qū)間[2,3]上單調(diào)遞增,
故③錯誤;
④,由圖象可得f(x)的值域為[0,],故④錯誤;
⑤,根據(jù)積分的幾何意義可知f(x)dxπ()21×1π×12,
故⑤正確.
故答案為:①②⑤.
科目:高中數(shù)學 來源: 題型:
【題目】為推動文明城市創(chuàng)建,提升城市整體形象,2018年12月30日鹽城市人民政府出臺了《鹽城市停車管理辦法》,2019年3月1日起施行.這項工作有利于市民養(yǎng)成良好的停車習慣,幫助他們樹立綠色出行的意識,受到了廣大市民的一致好評.現(xiàn)從某單位隨機抽取80名職工,統(tǒng)計了他們一周內(nèi)路邊停車的時間(單位:小時),整理得到數(shù)據(jù)分組及頻率分布直方圖如下:
組號 | 分組 | 頻數(shù) |
1 | 6 | |
2 | 8 | |
3 | 22 | |
4 | 28 | |
5 | 12 | |
6 | 4 |
(1)從該單位隨機選取一名職工,試計算這名職工一周內(nèi)路邊停車的時間少于8小時的頻率;
(2)求頻率分布直方圖中的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點,,且橢圓過點,,且是橢圓上位于第一象限的點,且的面積.
(1)求點的坐標;
(2)過點的直線與橢圓相交于點,,直線,與軸相交于,兩點,點,則是否為定值,如果是定值,求出這個定值,如果不是請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,n∈N*.
(1)設f(x)=a0+a1x+a2x2+…+anxn,
①求a0+a1+a2+…+an;
②若在a0,a1,a2,…,an中,唯一的最大的數(shù)是a4,試求n的值;
(2)設f(x)=b0+b1(x+1)+b2(x+1)2+…+bn(x+1)n,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2012年12月18日,作為全國首批開展空氣質(zhì)量新標準監(jiān)測的74個城市之一,鄭州市正式發(fā)布數(shù)據(jù).資料表明,近幾年來,鄭州市霧霾治理取得了很大成效,空氣質(zhì)量與前幾年相比得到了很大改善.鄭州市設有9個監(jiān)測站點監(jiān)測空氣質(zhì)量指數(shù)(),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設有2,5,2個監(jiān)測站點,以9個站點測得的的平均值為依據(jù),播報我市的空氣質(zhì)量.
(Ⅰ)若某日播報的為118,已知輕度污染區(qū)的平均值為74,中度污染區(qū)的平均值為114,求重度污染區(qū)的平均值;
(Ⅱ)如圖是2018年11月的30天中的分布,11月份僅有一天在內(nèi).
組數(shù) | 分組 | 天數(shù) |
第一組 | 3 | |
第二組 | 4 | |
第三組 | 4 | |
第四組 | 6 | |
第五組 | 5 | |
第六組 | 4 | |
第七組 | 3 | |
第八組 | 1 |
①鄭州市某中學利用每周日的時間進行社會實踐活動,以公布的為標準,如果小于180,則去進行社會實踐活動.以統(tǒng)計數(shù)據(jù)中的頻率為概率,求該校周日進行社會實踐活動的概率;
②在“創(chuàng)建文明城市”活動中,驗收小組把鄭州市的空氣質(zhì)量作為一個評價指標,從當月的空氣質(zhì)量監(jiān)測數(shù)據(jù)中抽取3天的數(shù)據(jù)進行評價,設抽取到不小于180的天數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,點在橢圓上,橢圓的離心率是.
(1)求橢圓的標準方程;
(2)設點為橢圓長軸的左端點,為橢圓上異于橢圓長軸端點的兩點,記直線斜率分別為,若,請判斷直線是否過定點?若過定點,求該定點坐標,若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1所示,在中, , , , 為的平分線,點在線段上, .如圖2所示,將沿折起,使得平面平面,連結(jié),設點是的中點.
圖1 圖2
(1)求證: 平面;
(2)在圖2中,若平面,其中為直線與平面的交點,求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com