【題目】直線l:ax+ y﹣1=0與x,y軸的交點(diǎn)分別為A,B,直線l與圓O:x2+y2=1的交點(diǎn)為C,D.給出下列命題:p:a>0,SAOB= ,q:a>0,|AB|<|CD|.則下面命題正確的是(
A.p∧q
B.¬p∧¬q
C.p∧¬q
D.¬p∧q

【答案】C
【解析】解:直線l:ax+ y﹣1=0與x,y軸的交點(diǎn)分別為A( ,0),B(0,a), SAOB= =
∴p是真命題;
直線l:ax+ y﹣1=0與x,y軸的交點(diǎn)分別為A( ,0),B(0,a),
|AB|=
直線l與圓O:x2+y2=1的交點(diǎn)為C,D.d= ,
|CD|=2 ,|AB|2﹣|CD|2= ≥0,
∴|AB|≥|CD|,
所以q假,
故選:C.
【考點(diǎn)精析】本題主要考查了命題的真假判斷與應(yīng)用的相關(guān)知識點(diǎn),需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講
設(shè)函數(shù)f(x)=|x﹣1|﹣|2x+1|的最大值為m.
(1)作出函數(shù)f(x)的圖象;
(2)若a2+2c2+3b2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 , ,則下列結(jié)論中正確的是(
A.函數(shù)y=f(x)?g(x)的周期為2
B.函數(shù)y=f(x)?g(x)的最大值為1
C.將f(x)的圖象向左平移 個單位后得到g(x)的圖象
D.將f(x)的圖象向右平移 個單位后得到g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

當(dāng)時,求函數(shù)圖象過的定點(diǎn);

當(dāng),,且有最小值2時,求a的值;

當(dāng),時,有恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx,g(x)= (m>0).
(1)當(dāng)m=1時,函數(shù)y=f(x)與y=g(x)在x=1處的切線互相垂直,求n的值;
(2)若對任意x>0,恒有|f(x)|≥|g(x)|成立,求實(shí)數(shù)n的值及實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點(diǎn),,

.

(1)求證:;

(2)若平面與平面所成的銳二面角的大小為,求線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱臺ABC﹣A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求證:BC1⊥平面AA1C1C
(2)點(diǎn)D是B1C1的中點(diǎn),求二面角A1﹣BD﹣B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓的六個等分點(diǎn)分成相同的兩組,它們每組三個點(diǎn)構(gòu)成的兩個正三角形除去內(nèi)部的六條線段后可以形成一個正六角星.如圖所示的正六角星的中心為點(diǎn)O,其中x,y分別為點(diǎn)O到兩個頂點(diǎn)的向量.若將點(diǎn)O到正六角星12個頂點(diǎn)的向量都寫成ax+by的形式,則a+b的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線

(1)若曲線C1是一個圓,且點(diǎn)P(1,1)在圓C1外,求實(shí)數(shù)m的取值范圍;

(2)當(dāng)m=2時,曲線關(guān)于直線x+1=0對稱的曲線為,設(shè)P為平面上的點(diǎn),滿足:存在過P點(diǎn)的無窮多對互相垂直的直線,它們分別與曲線C1和曲線相交,且直線被曲線C1截得的弦長與直線l2被曲線C2截得的弦長總相等.求所有滿足條件的點(diǎn)P的坐標(biāo);

查看答案和解析>>

同步練習(xí)冊答案