精英家教網 > 高中數學 > 題目詳情
6.若函數f(x)=$\frac{1}{3}{x^3}$-x在區(qū)間(a2-26,a)上有最大值,則實數a的取值范圍為( 。
A.(-1,5)B.(-1,5]C.(-1,2)D.(-1,2]

分析 求函數f(x)的導數,研究其最大值取到的位置,由于函數在區(qū)間(a2-26,a)上有最大值,故最大值點的橫坐標是集合(a2-26,a)的元素,由此可以得到關于參數a的等式,解之求得實數a的取值范圍.

解答 解:由題 f'(x)=x2-1,
令f'(x)<0解得-1<x<1;令f'(x)>0解得x<-1或x>1
由此得函數在(-∞,-1)上是增函數,在(-1,1)上是減函數,在(1,+∞)上是增函數
故函數在x=-1處取到極大值$\frac{2}{3}$,判斷知此極大值必是區(qū)間(a2-26,a)上的最大值
∴a2-26<-1<a,解得-1<a<5,
又當x=a時,f(a)=$\frac{1}{3}{a}^{3}-a≤\frac{2}{3}$,故有a≤-2或-1≤a≤2.
綜上知a∈(-1,2].
故選:D.

點評 本題考查用導數研究函數的最值,利用導數研究函數的最值是導數作為數學中工具的一個重要運用,要注意把握其作題步驟,求導,確定單調性,得出最值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

16.在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系.圓C1和直線C2的極坐標方程分別為ρ=4sinθ,ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(1)求圓C1和直線C2的直角坐標方程.
(2)求圓C1和直線C2交點的極坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知拋物線C的頂點在坐標原點O,其圖象關于y軸對稱且經過點M(2,1).
(1)求拋物線C的方程;
(2)若一個等邊三角形的一個頂點位于坐標原點,另兩個頂點在拋物線上,求該等邊三角形的面積;
(3)過點M作拋物線C的兩條弦MA,MB,設MA,MB所在直線的斜率分別為k1,k2,當k1k2=-2時,試證明直線AB恒過定點,并求出該定點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.隨機調查高河鎮(zhèn)某社區(qū)80個人,以研究這一社區(qū)居民在20:00--22:00時間段的休閑方式與性別的關系,得到下面的數據表:
休閑方式
性別
看電視看書合計
105060
101020
合計206080
(1)從這80人中按照性別進行分層抽樣,抽出4人,則男女應各抽取多少人;
(2)從第(1)問抽取的4位居民中隨機抽取2位,恰有1男1女的概率是多少;
(3)由以上數據,能否有99%的把握認為在20:00-22:00時間段的休閑方式與性別有關系.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數據:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{1}{2}$,且點$(1,\frac{3}{2})$在橢圓上,
(1)求橢圓C的方程;
(2)已知A為橢圓C的左頂點,直線l過右焦點F2與橢圓C交于M,N兩點,若AM,AN的斜率k1,k2滿足k1+k2=-1,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.在△ABC中,A=60°,且$\frac{c}$=$\frac{4}{3}$,則sinC=$\frac{2\sqrt{39}}{13}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知函數f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x(x≥0)}\\{2x{-x}^{2}(x<0)}\end{array}\right.$,函數g(x)=|f(x)|-1,若g(2-a2)>g(a),則實數a的取值范圍是( 。
A.(-2,1)B.(-∞,-2)U(2,+∞)C.(-2,2)D.(-∞,-2)U(-1,1)U(2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.在正項等差數列{an}中,a12=2a5-a9,且a5+a6+a7=18,則(  )
A.a1,a2,a3成等比數列B.a2,a3,a6成等比數列
C.a3,a4,a8成等比數列D.a4,a6,a9成等比數列

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知函數f(x)=$\left\{\begin{array}{l}{x^2},x<3\\{2^x},x≥3\end{array}$,則f(f(2))=( 。
A.2B.4C.8D.16

查看答案和解析>>

同步練習冊答案