函數(shù)已知向量
a
,
b
的夾角為
3
,|
a
|=2,|
b
|=3,設(shè)
m
=3
a
-2
b
,
n
=2
a
+k
b

(1)若
m
n
,求實(shí)數(shù)k的值;
(2)是否存在實(shí)數(shù)k,使得
m
n
,說明理由.
考點(diǎn):數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系,平行向量與共線向量
專題:平面向量及應(yīng)用
分析:(1)由已知得
m
n
=(3
a
-2
b
)(2
a
+k
b
)=0,由此能求出k=
4
3

(2)由
m
n
,得
3
2
=
-2
k
,由此能求出k.
解答: 解:(1)∵向量
a
,
b
的夾角為
3
,|
a
|=2,|
b
|=3,
設(shè)
m
=3
a
-2
b
n
=2
a
+k
b
,
m
n
,
m
n
=(3
a
-2
b
)(2
a
+k
b

=6
a
2
+(3k-4)
a
b
-2k
b
2

=24+6(3k-4)cos
3
-18k=0,
解得k=
4
3

(2)∵
m
n
,
3
2
=
-2
k
,
解得k=-
4
3
點(diǎn)評(píng):本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要注意向量垂直和向量平行的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)-
π
3
≤x≤
π
3
時(shí),函數(shù)y=sin x+
3
cos x的最大值和最小值分別為( 。
A、1,-1
B、1,-
1
2
C、2,
3
D、2,0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,當(dāng)a+b取最大值時(shí),這個(gè)幾何體的體積為( 。
A、
1
6
B、
1
3
C、
2
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班由24名女生和36名男生組成,現(xiàn)要組織20名學(xué)生外參觀,若這20名學(xué)生按性別分層抽樣產(chǎn)生,則參觀團(tuán)的組成法共有( 。
A、C
 
8
24
C
 
12
36
B、A
 
8
24
C
 
12
36
C、C
 
10
24
C
 
10
36
D、C
 
20
60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓上的一段弧長(zhǎng)等于該圓的內(nèi)接正方形的邊長(zhǎng),則這段弧所對(duì)的圓周角的弧度數(shù)為( 。
A、
2
4
B、2
2
C、
2
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f0(x)=ex-e-x,且對(duì)任意的n∈N,都有fn+1(x)=fn′(x),則f2013(x)=( 。
A、ex-e-x
B、e-x-ex
C、ex+e-x
D、-ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<a<b,且a+b=1,則下列不等式①log2a>-1;②log2a+log2b>-2;③log2(b-a)<0;④log2
b
a
+
a
b
)>1,其中一定成立的不等式的序號(hào)是( 。
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求經(jīng)過M(-2,1)且與A(-1,2)、B(3,0)兩點(diǎn)距離相等的直線方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC,中a,b,c分別是A,B,C的對(duì)邊,關(guān)于x的方程x2cosC+4xsinC+6<0的解集為空集.
(1)求角C的最大值;
(2)若c=
7
2
,S=
3
3
2
,求當(dāng)C最大時(shí)a+b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案