【題目】為了研究廣大市民對共享單車的使用情況,某公司在我市隨機抽取了100名用戶進(jìn)行調(diào)查,得到如下數(shù)據(jù):

每周使用次數(shù)

1

2

3

4

5

6次及以上

4

3

3

7

8

30

6

5

4

4

6

20

合計

10

8

7

11

14

50

認(rèn)為每周使用超過3次的用戶為“喜歡騎共享單車”.

(1)分別估算男、女“喜歡騎共享單車”的概率;

(2)請完成下面的2×2列聯(lián)表,并判斷能否有95%把握,認(rèn)為是否“喜歡騎共享單車”與性別有關(guān).

不喜歡騎共享單車

喜歡騎共享單車

合計

合計

附表及公式:,其中.

0.15

010

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)男用戶中“喜歡騎共享單車”的概率的估計值為,女用戶中“喜歡騎共享單車”的概率的估計值為(2)填表見解析,沒有95%的把握認(rèn)為是否“喜歡騎共享單車”與性別有關(guān)

【解析】

(1)利用古典概型的概率估算男、女“喜歡騎共享單車”的概率;(2)先完成列聯(lián)表,再利用獨立性檢驗判斷能否有95%把握,認(rèn)為是否“喜歡騎共享單車”與性別有關(guān).

:(1)由調(diào)查數(shù)據(jù)可知,男用戶中“喜歡騎共享單車”的比率為

因此男用戶中“喜歡騎共享單車”的概率的估計值為.

女用戶中“喜歡騎共享單車”的比率為,

因此女用戶中“喜歡騎共享單車”的概率的估計值為.

2)由圖中表格可得列聯(lián)表如下:

不喜歡騎共享單車

喜歡騎共享單車

合計

10

45

55

15

30

45

合計

25

75

100

列聯(lián)表代入公式計算得:

所以沒有95%的把握認(rèn)為是否“喜歡騎共享單車”與性別有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)(其中,為自然對數(shù)的底數(shù)).

,使得直線為函數(shù)的一條切線;

②對,函數(shù)的導(dǎo)函數(shù)無零點;

③對,函數(shù)總存在零點;

則上述結(jié)論正確的是______.(寫出所有正確的結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大氣污染是我國目前最突出的環(huán)境問題之一,其中工廠廢氣是大氣污染的重大污染源之一。工廠廢氣未經(jīng)凈化處理排放至空氣中,除了對空氣質(zhì)量造成嚴(yán)重破壞,還會對人體的健康造成重大威脅。長期生活在污染的空氣中,生活質(zhì)量及身體健康將急劇下降。某工廠因為污染問題需改進(jìn)技術(shù),2019年初購進(jìn)一臺環(huán)保新機器投入生產(chǎn),機器的成本價為36萬元,第年該機器包括維修費和機器護(hù)理費用在內(nèi),每年另需投人費用萬元,購進(jìn)該機器后每年盈利20萬元.

(1)問該機器投入生產(chǎn)第幾年,工廠開始盈利(即總收入大于所有投人的費用)?

2)由于機器使用年限越大維修等費用越高,所以工廠決定當(dāng)年平均利潤最大時將該機器以5萬元低價處理,問使用該機器幾年后工廠年平均利潤最大?此時工廠獲得的總利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,,則函數(shù)上的所有零點之和為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是圓上的一動點,點,點在線段上,且滿足.

(1)求點的軌跡的方程;

(2)設(shè)曲線軸的正半軸,軸的正半軸的交點分別為點,斜率為的動直線交曲線、兩點,其中點在第一象限,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形是邊長為2的菱形,,的中點,以為折痕將折起到的位置,使得平面平面,如圖2.

1)證明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與橢圓相切于第一象限的點,且直線軸,軸分別交于點,,當(dāng)為坐標(biāo)原點)的面積最小時,為橢圓的兩個焦點),則此時的平分線的長度為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓的長軸長為4.

1)求橢圓的方程;

2)已知直線與橢圓交于兩點,是否存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy22pxp0)的準(zhǔn)線方程為x=﹣1

1)求拋物線C的方程;

2)過拋物線C的焦點作直線l,交拋物線CAB兩點,若線段AB中點的橫坐標(biāo)為6,求|AB|

查看答案和解析>>

同步練習(xí)冊答案