下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)為( 。
A、f(x)=x-1
B、f(x)=cosx
C、f(x)=2|x|
D、f(x)=log
1
2
|x|
考點(diǎn):函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分別判斷函數(shù)的奇偶性和單調(diào)性即可得到結(jié)論.
解答: 解:A.函數(shù)f(x)=x-1是奇函數(shù),∴不滿足條件.
B.函數(shù)f(x)=cosx是偶函數(shù),但在(0,+∞)上不是單調(diào)函數(shù).不滿足條件.
C.函數(shù)f(x)=2|x|是偶函數(shù),在(0,+∞)上是單調(diào)遞增函數(shù),不滿足條件.
D.函數(shù)f(x)=log
1
2
|x|
是偶函數(shù),在(0,+∞)上是單調(diào)遞減函數(shù),滿足條件,
故選:D.
點(diǎn)評:本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,要求熟練掌握常見函數(shù)的奇偶性和單調(diào)性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kx+b的圖象過點(diǎn)(2,1)且方向向量
ν
=(1,-1)
,若不等式f(x)≥x2+x-5
的解集為A⊆(-∞,a]
(1)求a的取值范圍;
(2)解不等式
x2-(a+3)x+2a+3
f(x)
<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+2cosx-3,x∈[-
π
3
,
π
3
]
,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=f(x)在點(diǎn)P(2,-3)處的切線方程為x+2y+4=0,則f′(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
5
5
,則cos2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的表面積是(  )
A、(2+
5
)π
B、(4+
5
)π
C、4π
D、6π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中,已知O (0,0,0),A(2,-1,3),B(2,1,1).
(1)求|AB|的長度;
(2)寫出A、B兩點(diǎn)經(jīng)此程序框圖執(zhí)行運(yùn)算后的對應(yīng)點(diǎn)A0,B0的坐標(biāo),并說出點(diǎn)A0,B0在空間直角坐標(biāo)系o-xyz中的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面向量
a
=(-2,1),
b
=(λ,-1),若
a
b
的夾角是鈍角,則λ的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x+|lgx|-2=0有
 
個(gè)實(shí)數(shù)根.

查看答案和解析>>

同步練習(xí)冊答案