【題目】如圖,四棱錐中,底面為矩形, 平面, ,點為的中點,點在棱上移動.
(1)當點為的中點時,試判斷與平面的位置關系,并說明理由;
(2)求證:無論點在的何處,都有;
(3)求二面角的余弦值.
【答案】(1)面;(2)詳見解析;(3).
【解析】試題分析:
(1)由于分別為的中點,可得,再根據(jù)線面平行的判定定理即可證明結果; (2)因為面,可得;由于為矩形,則,根據(jù)線面垂直的判定定理,可得面,進而可得.再由于,且為中點,可得,于是可證面,進而求證出結論;(3) 過作于, 于,連接,則即為所求二面角的平面角.然后再中即可求出的余弦值,即可求出二面角的余弦值.
試題解析:
(1)∵分別為的中點,
∴,∵面面,∴面.
(2)∵面面,∴.
∵為矩形,∴,∵,∴面,
∵面,∴.
∵,且為中點,∴.
∵,∴面,∵面,∴.
(3)
過作于, 于,連接,則即為所求.易得.
∵為矩形,∴,所以點到的距離為.
∵,∴,∵為中點,∴為中點,
∴.
在中.
∴,
即二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,過點的直線與圓相交于兩點,過點且與垂直的直線與圓的另一交點為.
(1)當點坐標為時,求直線的方程;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓中心在坐標原點,A(2,0),B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.
(1)若=6,求k的值;
(2)求四邊形AEBF面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)從某班的一次期末考試中,隨機的抽取了七位同學的數(shù)學(滿分150分)、物理(滿分110分)成績如下表所示,數(shù)學、物理成績分別用特征量表示,
特征量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
t | 101 | 124 | 119 | 106 | 122 | 118 | 115 |
y | 74 | 83 | 87 | 75 | 85 | 87 | 83 |
求關于t的回歸方程;
(2)利用(1)中的回歸方程,分析數(shù)學成績的變化對物理成績的影響,并估計該班某學生數(shù)學成績130分時,他的物理成績(精確到個位).
附:回歸方程 中斜率和截距的最小二乘估計公式分別為:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知冪函數(shù)(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設函數(shù),若g(x)>2對任意的x∈R恒成立,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3-3ax+e,g(x)=1-lnx,其中e為自然對數(shù)的底數(shù).
(I)若曲線y=f(x)在點(1,f(1))處的切線與直線l:x+2y=0垂直,求實數(shù)a的值;
(II)設函數(shù)F(x)=-x[g(x)+x-2],若F(x)在區(qū)間(m,m+1)(m∈Z)內存在唯一的極值點,求m的值;
(III)用max{m,n}表示m,n中的較大者,記函數(shù)h(x)=max{f(x),g(x)}(x>0). 若函數(shù)h(x)在(0,+∞)上恰有2個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】本著健康、低碳的生活理念,租用公共自行車的人越來越多.租用公共自行車的收費標準是每車每次不超過兩小時免費,超過兩小時的部分每小時2元(不足1小時的部分按1小時計算).甲乙兩人相互獨立租車(各租一車一次).設甲、乙不超過兩小時還車的概率分別為, ;兩小時以上且不超過三小時還車的概率分別為, ;兩人租車時間都不會超過四小時.
(1)求出甲、乙所付租車費用相同的概率;
(2)設甲、乙兩人所付的租車費用之和為隨機變量,求隨機變量的概率分布和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設P、Q為兩個非空集合,定義集合P+Q={m+n| m∈P,n∈Q},若P={0,2,5}, Q={1,2,6},則P+Q中元素的個數(shù)為 ( )
A. 9 B. 8 C. 7 D. 6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列滿足:,該數(shù)列的前三項分別加上1,1,3后成等比數(shù)列,且.
(1)求數(shù)列,的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com