精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=x3-3ax+e,g(x)=1-lnx,其中e為自然對數的底數.

(I)若曲線y=f(x)在點(1,f(1))處的切線與直線l:x+2y=0垂直,求實數a的值;

(II)設函數F(x)=-x[g(x)+x-2],若F(x)在區(qū)間(m,m+1)(m∈Z)內存在唯一的極值點,求m的值;

(III)用max{m,n}表示m,n中的較大者,記函數h(x)=max{f(x),g(x)}(x>0). 若函數h(x)在(0,+∞)上恰有2個零點,求實數a的取值范圍.

【答案】(I)a=; (II)m=0或m=3; (III)a>.

【解析】試題分析:Ⅰ)求出函數的導數,計算f′(1),求出a的值即可;
Ⅱ)求出函數F(x)的導數,根據函數的單調性求出函數的極值點,求出對應的m的值即可;
Ⅲ)通過討論a的范圍求出函數f(x)的單調區(qū)間,結合函數的單調性以及函數的零點個數確定a的范圍即可.

試題解析:

(I)易得,f '(x)=3x2-3a,所以f '(1)=3-3a,

依題意,(3-3a)(-)=-1,解得a=;

(II)因為F(x)=-x[g(x)+x-2]=-x[(1-lnx)+x-2]=xlnx-x2+x,

則F' (x)=lnx+l-x+l=lnx-x+2. 設t(x)=lnx-x+2,

則t '(x)=-1=.

令t '(x)=0,得x=1.

則由t '(x)>0,得0<x<1,F '(x)為增函數;

由t '(x)<0,得x>1,F '(x)為減函數;

而F '()=-2-+2=-<0,F '(1)=1>0.

則F '(x)在(0,1)上有且只有一個零點x1

且在(0,x1)上F '(x)<0,F(x)為減函數;

在(x1,1)上F '(x)>0,F(x)為增函數.

所以x1為極值點,此時m=0.

又F '(3)=ln3-1>0,F '(4)=21n2-2<0,

則F '(x)在(3,4)上有且只有一個零點x2,

且在(3,x2)上F '(x)>0,F(x)為增函數;

在(x2,4)上F '(x)<0,F(x)為減函數.

所以x2為極值點,此時m=3.

綜上m=0或m=3.

(III)(1)當x∈(0,e)時,g(x)>0,依題意,h(x)≥g(x)>0,不滿足條件;

(2)當x=e時,g(e)=0,f(e)=e3-3ae+e,

①若f(e)=e3-3ae+e≤0,即a≥,則e是h(x)的一個零點;

②若f(e)=e3-3ae+e>0,即a<,則e不是h(x)的零點;

(3)當x∈(e,+∞)時,g(x)<0,所以此時只需考慮函數f(x)在(e,+∞)上零點的情況.

因為f '(x)=3x2-3a>3e2-3a,所以

①當a≤e2時,f '(x)>0,f(x)在(e,+∞)上單調遞增.

又f(e)=e3-3ae+e,所以

(i)當a≤時,f(e)≥0,f(x)在(e,+∞)上無零點;

(ii)當<a≤e2時,f(e)<0,

又f(2e)=8e3-6ae+e≥8e3-6e3+e>0,

所以此時f(x)在(e,+∞)上恰有一個零點;

②當a>e2時,令f '(x)=0,得x=±.

由f '(x)<0,得e<x<

由f '(x)>0,得x>;

所以f(x)在(e, )上單調遞減,在(,+∞)上單調遞增.

因為f(e)=e3-3ae+e<e3-3e3+e<0,

f(2a)=8a3-6a2+e>8a2-6a2+e=2a2+e>0,

所以此時f(x)在(e,+∞)上恰有一個零點;

綜上,a>.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某集團為了獲得更大的收益,每年要投入一定的資金用于廣告促銷.經調查投入廣告費t(百萬元),可增加銷售額約為-t25t(百萬元)(0t5) (注:收益=銷售額-投放)

1)若該公司將當年的廣告費控制在3百萬元之內,則應投入多少廣告費,才能使該公司由此獲得的收益最大?

2)現該公司準備共投入3百萬元,分別用于廣告促銷和技術改造.經預測,每投入技術改造費x(百萬元),可增加的銷售額約為-x3x23x(百萬元).請設計一個資金分配方案,使該公司由此獲得的收益最大.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的中心為原點,離心率,其中一個焦點的坐標為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)當點在橢圓上運動時,設動點的運動軌跡為若點滿足: 其中上的點.直線的斜率之積為,試說明:是否存在兩個定點,使得為定值?若存在,求的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果方程cos2x-sinx+a=0在(0,]上有解,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, 平面, ,點的中點,點在棱上移動.

(1)當點的中點時,試判斷與平面的位置關系,并說明理由;

(2)求證:無論點的何處,都有;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC中,內角A,B,C所對的邊分別為a,b,c,且滿足asinA-csinC=b(sinA-sinB).

(Ⅰ)求角C的大;

(Ⅱ)若邊長c=4,求△ABC的周長最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,BC邊上的中線AD長為3,且BD=2,sinB=

(Ⅰ)求sin∠BAD的值;

(Ⅱ)求AC的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是否存在實數a,使得函數y=sin2x+acosx+a-在閉區(qū)間[0,]上的最大值是1?若存在,則求出對應的a的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數),.

(1)若的圖象在處的切線恰好也是圖象的切線.

①求實數的值;

②若方程在區(qū)間內有唯一實數解,求實數的取值范圍.

(2)當時,求證:對于區(qū)間上的任意兩個不相等的實數, ,都有成立.

查看答案和解析>>

同步練習冊答案