【題目】設(shè).
(Ⅰ)令,求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,直線與的圖像有兩個交點(diǎn),且,求證:.
【答案】(I)詳見解析;(II)詳見解析.
【解析】
試題(I)先求得的表達(dá)式,對求導(dǎo),以分類討論函數(shù)的單調(diào)區(qū)間.(II) 由(I)知,,根據(jù)單調(diào)性可知函數(shù)在處取得極小值也是最小值.構(gòu)造函數(shù),利用導(dǎo)數(shù)求得,即有,根據(jù)單調(diào)性有.
試題解析:
解:(Ⅰ)由,
可得,
則.
當(dāng)時, 時,,函數(shù)單調(diào)遞增;
當(dāng)時,時,,函數(shù)單調(diào)遞增;時,,函數(shù)單調(diào)遞減;
所以,當(dāng)時,函數(shù)單調(diào)遞增區(qū)間為;當(dāng)時,函數(shù)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(Ⅱ)由(Ⅰ)知,.
當(dāng)時, 是增函數(shù),且當(dāng)時,,單調(diào)遞減;
當(dāng)時,,單調(diào)遞增.
所以在處取得極小值,且,
所以.
.
令,則,
于是在(0,1)上單調(diào)遞減,故,
由此得即.
因?yàn)?/span>,在單調(diào)遞增,
所以即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,PA=AD=DC=2,AB=4且AB∥CD,∠BAD=90°.
(1)求證:BC⊥PC;
(2)求PB與平面PAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進(jìn)行調(diào)研,力爭有效的改良玉米品種,為農(nóng)民提供技術(shù)支.現(xiàn)對已選出的一組玉米的莖高進(jìn)行統(tǒng)計,獲得莖葉圖如右圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
(1)完成列聯(lián)表,并判斷是否可以在犯錯誤的概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?
(2)①按照分層抽樣的方式,在上述樣本中,從易倒伏和抗倒伏兩組中抽取9株玉米,設(shè)取出的易倒伏矮莖玉米株數(shù)為,求的分布列(概率用組合數(shù)算式表示);
②若將頻率視為概率,從抗倒伏的玉米試驗(yàn)田中再隨機(jī)抽取出50株,求取出的高莖玉米株數(shù)的數(shù)學(xué)期望和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),圓,定點(diǎn),點(diǎn)是圓上一動點(diǎn),線段的垂直平分線交圓的半徑于點(diǎn),點(diǎn)的軌跡為.
(1)求曲線的方程;
(2)已知點(diǎn)是曲線上但不在坐標(biāo)軸上的任意一點(diǎn),曲線與軸的焦點(diǎn)分別為,直線和分別與軸相交于兩點(diǎn),請問線段長之積是否為定值?如果還請求出定值,如果不是請說明理由;
(3)在(2)的條件下,若點(diǎn)坐標(biāo)為(-1,0),設(shè)過點(diǎn)的直線與相交于兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個生產(chǎn)公司投資A生產(chǎn)線500萬元,每萬元可創(chuàng)造利潤萬元,該公司通過引進(jìn)先進(jìn)技術(shù),在生產(chǎn)線A投資減少了x萬元,且每萬元的利潤提高了;若將少用的x萬元全部投入B生產(chǎn)線,每萬元創(chuàng)造的利潤為萬元,其中.
若技術(shù)改進(jìn)后A生產(chǎn)線的利潤不低于原來A生產(chǎn)線的利潤,求x的取值范圍;
若生產(chǎn)線B的利潤始終不高于技術(shù)改進(jìn)后生產(chǎn)線A的利潤,求a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)(e為自然對數(shù)的底數(shù)),.
(I)記.
(i)討論函數(shù)單調(diào)性;
(ii)證明當(dāng)時,恒成立
(II)令,設(shè)函數(shù)G(x)有兩個零點(diǎn),求參數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系.曲線的極坐標(biāo)方程為.
(1)寫出的普通方程和的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在上,點(diǎn)在上,求的最小值及此時點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場在“五一”促銷活動中,為了了解消費(fèi)額在5千元以下(含5千元)的顧客的消費(fèi)分布情況,從這些顧客中隨機(jī)抽取了100位顧客的消費(fèi)數(shù)據(jù)(單位:千元),按,,,,分成5組,制成了如圖所示的頻率分布直方圖現(xiàn)采用分層抽樣的方法從和兩組顧客中抽取4人進(jìn)行滿意度調(diào)查,再從這4人中隨機(jī)抽取2人作為幸運(yùn)顧客,求所抽取的2位幸運(yùn)顧客都來自組的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com