【題目】某商場在五一促銷活動中,為了了解消費額在5千元以下(含5千元)的顧客的消費分布情況,從這些顧客中隨機抽取了100位顧客的消費數(shù)據(jù)(單位:千元),按,,,分成5組,制成了如圖所示的頻率分布直方圖現(xiàn)采用分層抽樣的方法從兩組顧客中抽取4人進行滿意度調(diào)查,再從這4人中隨機抽取2人作為幸運顧客,求所抽取的2位幸運顧客都來自組的概率.

【答案】

【解析】

組抽取1人,記為A;從組抽取3人,分別記為,.列出所有情況,統(tǒng)計滿足條件的情況,相除得到答案.

根據(jù)題意,組的顧客有人, 組的顧客有.

用分層抽樣的方法從兩組顧客中抽取4人,則從組抽取1人,記為A;

組抽取3人,分別記為,.

于是,從這4人中隨機抽取2人的所有可能結(jié)果為,,,6.

設(shè)所抽取的2人都來自組為事件C,所包含的結(jié)果為,,3.

因此,所抽取的2位幸運顧客都來自組的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,試求函數(shù)圖像過點的切線方程;

(2)當(dāng)時,若關(guān)于的方程有唯一實數(shù)解,試求實數(shù)的取值范圍;

(3)若函數(shù)有兩個極值點,且不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè).

(Ⅰ)令,求的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時,直線的圖像有兩個交點,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與拋物線相交于兩點,為坐標(biāo)原點,直線軸相交于點,且.

1)求證:;

2)求點的橫坐標(biāo);

3)過點分別作拋物線的切線,兩條切線交于點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】P是棱長為1的正方體ABCDA1B1C1D1的底面A1B1C1D1上一點,則的取值范圍是__.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在斜三棱柱中,側(cè)面平面,,的中點.

(1)求證:平面;

(2)在側(cè)棱上確定一點,使得二面角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,平面平面,,.

(1)求棱錐的體積;

(2)求證:平面平面;

(3)在線段上是否存在一點,使平面?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某蔬菜商店買進的土豆(噸)與出售天數(shù)(天)之間的關(guān)系如下表所示:

2

3

4

5

6

7

9

12

1

2

3

3

4

5

6

8

(1)請根據(jù)上表數(shù)據(jù)在下列網(wǎng)格紙中繪制散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(其中保留三位小數(shù));(注:

(3)在表格中(的8個對應(yīng)點中,任取3個點,記這3個點在直線的下方的個數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱中,,側(cè)面底面,的中點,.

(Ⅰ)求證:為直角三角形;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案