【題目】已知函數(shù).

(1)當(dāng)時(shí),試求函數(shù)圖像過點(diǎn)的切線方程;

(2)當(dāng)時(shí),若關(guān)于的方程有唯一實(shí)數(shù)解,試求實(shí)數(shù)的取值范圍;

(3)若函數(shù)有兩個(gè)極值點(diǎn),且不等式恒成立,試求實(shí)數(shù)的取值范圍.

【答案】(1);(2);(3).

【解析】

試題對(duì)于(1),先利用導(dǎo)數(shù)求出切線的斜率,再寫出點(diǎn)斜式方程;

對(duì)于(2),方程可化為:,構(gòu)造,通過研究的單調(diào)性即可求出的范圍.

對(duì)于(3),首先根據(jù)有兩個(gè)極值點(diǎn),利用導(dǎo)數(shù)求出的取值范圍以及極值點(diǎn);將恒成立轉(zhuǎn)化為恒成立,然后構(gòu)建函數(shù)求出的最小值即可.

試題解析:

1)當(dāng)時(shí),有.

,,

過點(diǎn)的切線方程為:,

.

2)當(dāng)時(shí),有,其定義域?yàn)椋?/span>

從而方程可化為:,

,則,

.

上單調(diào)遞增,在上單調(diào)遞減,

,

又當(dāng)時(shí),;當(dāng)時(shí),.

關(guān)于的方程有唯一實(shí)數(shù)解,

實(shí)數(shù)的取值范圍是:.

3的定義域?yàn)椋?/span>.

.

函數(shù)有兩個(gè)極值點(diǎn),

有兩個(gè)不等實(shí)數(shù)根,

,且,

從而.

由不等式恒成立恒成立,

,

,當(dāng)時(shí)恒成立,

函數(shù)上單調(diào)遞減,,

故實(shí)數(shù)的取值范圍是:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,平面側(cè)面,且

(1)求證: ;

(2)若直線與平面所成的角為,請(qǐng)問在線段上是否存在點(diǎn),使得二面角的大小為,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在棱錐P-ABCD中,PA平面ABCD,底面ABCD為直角梯形,PA=AD=DC=2,AB=4且ABCDBAD=90°.

(1)求證:BCPC;

(2)PB與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班共有學(xué)生45人,其中女生18人,現(xiàn)用分層抽樣的方法,從男、女學(xué)生中各抽取若干學(xué)生進(jìn)行演講比賽,有關(guān)數(shù)據(jù)見下表(單位:人)

性別

學(xué)生人數(shù)

抽取人數(shù)

女生

18

男生

3

1)求;

2)若從抽取的學(xué)生中再選2人做專題演講,求這2人都是男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程是是參數(shù)),以坐標(biāo)原點(diǎn)為原點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)判斷直線與曲線的位置關(guān)系;

(2)過直線上的點(diǎn)作曲線的切線,求切線長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù).在以原點(diǎn)為極點(diǎn),為參數(shù)).在以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

(Ⅰ)求曲線C的普通方程和直線的直角坐標(biāo)方程;

(Ⅱ)設(shè),直線與曲線C交于M,N兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對(duì)玉米種植情況進(jìn)行調(diào)研,力爭(zhēng)有效的改良玉米品種,為農(nóng)民提供技術(shù)支.現(xiàn)對(duì)已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖如右圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.

1)完成列聯(lián)表,并判斷是否可以在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?

2①按照分層抽樣的方式,在上述樣本中,從易倒伏和抗倒伏兩組中抽取9株玉米,設(shè)取出的易倒伏矮莖玉米株數(shù)為,求的分布列(概率用組合數(shù)算式表示);

②若將頻率視為概率,從抗倒伏的玉米試驗(yàn)田中再隨機(jī)抽取出50株,求取出的高莖玉米株數(shù)的數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),圓,定點(diǎn),點(diǎn)是圓上一動(dòng)點(diǎn),線段的垂直平分線交圓的半徑于點(diǎn),點(diǎn)的軌跡為.

(1)求曲線的方程;

(2)已知點(diǎn)是曲線上但不在坐標(biāo)軸上的任意一點(diǎn),曲線軸的焦點(diǎn)分別為,直線分別與軸相交于兩點(diǎn),請(qǐng)問線段長(zhǎng)之積是否為定值?如果還請(qǐng)求出定值,如果不是請(qǐng)說明理由;

(3)在(2)的條件下,若點(diǎn)坐標(biāo)為(-1,0),設(shè)過點(diǎn)的直線相交于兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)在五一促銷活動(dòng)中,為了了解消費(fèi)額在5千元以下(含5千元)的顧客的消費(fèi)分布情況,從這些顧客中隨機(jī)抽取了100位顧客的消費(fèi)數(shù)據(jù)(單位:千元),按,,,分成5組,制成了如圖所示的頻率分布直方圖現(xiàn)采用分層抽樣的方法從兩組顧客中抽取4人進(jìn)行滿意度調(diào)查,再?gòu)倪@4人中隨機(jī)抽取2人作為幸運(yùn)顧客,求所抽取的2位幸運(yùn)顧客都來自組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案