【題目】如圖,在直三棱柱中,平面側(cè)面,且
(1)求證: ;
(2)若直線與平面所成的角為,請問在線段上是否存在點(diǎn),使得二面角的大小為,請說明理由.
【答案】(1)詳見解析, (2)
【解析】(1)證明:連接交于點(diǎn),
因,則
由平面側(cè)面,且平面側(cè)面,
得,又平面, 所以.
三棱柱是直三棱柱,則,所以.
又,從而側(cè)面 ,又側(cè)面,故.
(2)由(1),則直線與平面所成的角
所以,又,所以
假設(shè)在線段上是否存在一點(diǎn),使得二面角的大小為
由是直三棱柱,所以以點(diǎn)為原點(diǎn),以所在直線分別為軸建立空間直角坐標(biāo)系,如圖所示,且設(shè),則由,,得
所以,
設(shè)平面的一個法向量,由, 得:
,取
由(1)知,所以平面的一個法向量
所以,解得
∴點(diǎn)為線段中點(diǎn)時,二面角的大小為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)一位高三班主任對本班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如表所示:
積極參加班級工作 | 不積極參加班級工作 | 合計 | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性不高 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
如果隨機(jī)調(diào)查這個班的一名學(xué)生,求事件A:抽到不積極參加班級工作且學(xué)習(xí)積極性不高的學(xué)生的概率;
若不積極參加班級工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取兩名學(xué)生參加某項活動,請用字母代表不同的學(xué)生列舉出抽取的所有可能結(jié)果;
在的條件下,求事件B:兩名學(xué)生中恰有1名男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).是曲線上的動點(diǎn),將線段繞點(diǎn)順時針旋轉(zhuǎn)得到線段,設(shè)點(diǎn)的軌跡為曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(I)求曲線,的極坐標(biāo)方程;
(II)在(I)的條件下,若射線與曲線,分別交于兩點(diǎn)(除極點(diǎn)外),且有定點(diǎn),求面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)),是的導(dǎo)函數(shù).
(Ⅰ)當(dāng)時,求證;
(Ⅱ)是否存在正整數(shù),使得對一切恒成立?若存在,求出的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年時紅軍長征勝利80周年,某市電視臺舉辦紀(jì)念紅軍長征勝利80周年知識問答,宣傳長征精神.首先在甲、乙、丙、丁四個不同的公園進(jìn)行支持簽名活動.
公園 | 甲 | 乙 | 丙 | 丁 |
獲得簽名人數(shù) | 45 | 60 | 30 | 15 |
然后在各公園簽名的人中按分層抽樣的方式抽取10名幸運(yùn)之星回答問題,從10個關(guān)于長征的問題中隨機(jī)抽取4個問題讓幸運(yùn)之星回答,全部答對的幸運(yùn)之星獲得一份紀(jì)念品.
(Ⅰ)求此活動中各公園幸運(yùn)之星的人數(shù);
(Ⅱ)若乙公園中每位幸運(yùn)之星對每個問題答對的概率均為,求恰好2位幸運(yùn)之星獲得紀(jì)念品的概率;
(Ⅲ)若幸運(yùn)之星小李對其中8個問題能答對,而另外2個問題答不對,記小李答對的問題數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點(diǎn),AB=BC.
求證:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD,底面ABCD為梯形,,,且.
(1)在PD上是否存在一點(diǎn)F,使得平面PAB,若存在,找出F的位置,若不存在,請說明理由;
(2)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠為了評估某種零件生產(chǎn)過程的情況,制定如下規(guī)則:若零件的尺寸在,則該零件的質(zhì)量為優(yōu)秀,生產(chǎn)過程正常;若零件的尺寸在且不在,則該零件的質(zhì)量為良好,生產(chǎn)過程正常;若零件的尺寸在且不在,則該零件的質(zhì)量為合格,生產(chǎn)過程正常;若零件的尺寸不在,則該零件不合格,同時認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查,(其中為樣本平均數(shù),為樣本標(biāo)準(zhǔn)差)下面是檢驗員從某一天生產(chǎn)的一批零件中隨機(jī)抽取的20個零件尺寸的莖葉圖(單位:cm)經(jīng)計算得,其中為抽取的第個零件的尺寸,.
(1)利用該樣本數(shù)據(jù)判斷是否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查;
(2)利用該樣本,從質(zhì)量良好的零件中任意抽取兩個,求抽取的兩個零件的尺寸均超過的概率;
(3)剔除該樣本中不在的數(shù)據(jù),求剩下數(shù)據(jù)的平均數(shù)和標(biāo)準(zhǔn)差(精確到0.01)
參考數(shù)據(jù):,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,試求函數(shù)圖像過點(diǎn)的切線方程;
(2)當(dāng)時,若關(guān)于的方程有唯一實數(shù)解,試求實數(shù)的取值范圍;
(3)若函數(shù)有兩個極值點(diǎn),且不等式恒成立,試求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com