【題目】已知函數(shù)為常數(shù).

(1)求函數(shù)的最小值;

(2)設(shè)是函數(shù)的兩個零點,,證明.

【答案】(1);(2)證明見解析.

【解析】試題分析:(1)先求導數(shù),再求導函數(shù)零點,列表分析函數(shù)單調(diào)性,根據(jù)單調(diào)性確定最小值取法,最后代入求最小值,(2)作差函數(shù),利用零點條件化為一元函數(shù),根據(jù)導數(shù)研究一元函數(shù)單調(diào)性,確定其最大值小于零,最后根據(jù)原函數(shù)單調(diào)性證得不等式.

試題解析:(1),的定義域為,∴

,所以遞增;

,,所以遞減,

,,

函數(shù)的最小值為.

(1)知滿足,,

,由題意可知

又由(1)可知遞減,,所以,

,

,是減函數(shù),所以

,所以當,,

因為,上單調(diào)遞增,所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程是:是參數(shù),是常數(shù)).以為極點,軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)若直線與曲線相交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線.

(Ⅰ)求曲線C的方程;

(Ⅱ)設(shè)Q為曲線C上的一個不在軸上的動點,O為坐標原點,過點OQ的平行線交曲線CM,N兩個不同的點, 求△QMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】祖暅是我國齊梁時代的數(shù)學家,是祖沖之的兒子,他提出了一條原理:“冪勢既同,則積不容易.”這里的“冪”指水平截面的面積.“勢”指高,這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等。于是可把半徑相等的半球(底面在下)和圓柱(圓柱高等于半徑)放在同一水平面上,圓柱里再放一個半徑和高都與圓柱相等的圓錐(錐尖朝下),考察圓柱里被圓錐截剩的立體,這樣在同一高度用平行平面截得的半球截面和圓柱中剩余立體截得的截面面積相等,因此半球的體積等于圓柱中剩余立體的體積.設(shè)由橢圓所圍成的平面圖形繞軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(如圖,稱為“橢球體”),請類比以上所介紹的應用祖暅原理求球體體積的做法求這個橢球體的體積.其體積等于________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,矩形中,,平面,,上的點,且平面.

(1)求證:平面;

(2)求平面與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的多面體,底面四邊形是菱形,相交于,,在平面上的射影恰好是線段的中點.

(Ⅰ)求證:平面

(Ⅱ)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了推動數(shù)學教學方法的改革,學校將高一年級部分生源情況基本相同的學生分成甲、乙兩個班,每班各40人,甲班按原有模式教學,乙班實施教學方法改革.經(jīng)過一年的教學實驗,將甲、乙兩個班學生一年來的數(shù)學成績?nèi)∑骄鶖?shù),兩個班學生的平均成績均在,按照區(qū)間,,,進行分組,繪制成如下頻率分布直方圖,規(guī)定不低于80分(百分制)為優(yōu)秀.

完成表格,并判斷是否有以上的把握認為“數(shù)學成績優(yōu)秀與教學改革有關(guān)”;

(2)從乙班,分數(shù)段中,按分層抽樣隨機抽取7名學生座談,從中選三位同學發(fā)言,記來自發(fā)言的人數(shù)為隨機變量,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解甲、乙兩種產(chǎn)品的質(zhì)量,從中分別隨機抽取了10件樣品,測量產(chǎn)品中某種元素的含量(單位:毫克),如圖所示是測量數(shù)據(jù)的莖葉圖.規(guī)定:當產(chǎn)品中的此中元素的含量不小于18毫克時,該產(chǎn)品為優(yōu)等品.

(1)試用樣品數(shù)據(jù)估計甲、乙兩種產(chǎn)品的優(yōu)等品率;

(2)若從甲、乙兩種產(chǎn)品的優(yōu)等品中各隨機抽取1件,抽到的2件優(yōu)等品中,“甲產(chǎn)品的含量28毫克優(yōu)等品必須在內(nèi),且乙產(chǎn)品的含量28毫克優(yōu)等品不包含在內(nèi)”為事件,求事件的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)有兩個極值點,且恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案