【題目】設(shè)函數(shù),其中,且.

(1)值;

(2),為自然對(duì)數(shù)的底數(shù),求證:當(dāng)時(shí),;

(3)若函數(shù)上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

【答案】見解析

【解析】(1)依題意.……………2

(2)記,則,

設(shè),則當(dāng)時(shí),因此函數(shù)上是單調(diào)增函數(shù),且

所以由零點(diǎn)存在定理知,上存在唯一的零點(diǎn),……………5

列表:

極小值

所以,故……………8

(3)依題意,,記.

當(dāng)時(shí),

上的單調(diào)增函數(shù),則,即上恒成立

因?yàn)?/span>上的單調(diào)增函數(shù)

所以,從而,舍去. ……………10

上的單調(diào)減函數(shù),則,即上恒成立

因?yàn)?/span>,

所以上不恒成立,舍去. ……………12

當(dāng)時(shí),

上的單調(diào)增函數(shù),則,即上恒成立

,

列表:

+

0

-

極大值

所以

所以,即,故……………14

上的單調(diào)減函數(shù),則,即上恒成立

知,當(dāng)時(shí),;當(dāng),

所以,不成立,舍去

綜上,……………16

備注:由函數(shù)圖象能得出若單調(diào)必遞增因?yàn)閳D象交點(diǎn)左側(cè)y小于0,右側(cè)y大于0),可減少對(duì)的討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓柱中,A,B,C,D是底面圓的四等分點(diǎn),O是圓心,A1AB1B,C1C與底面ABCD垂直,底面圓的直徑等于圓柱的高.

(Ⅰ)證明:BCAB1

(Ⅱ)(。┣蠖娼A1 - BB1 - D的大小;

(ⅱ)求異面直線AB1BD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查“五一”小長(zhǎng)假出游選擇“有水的地方”是否與性別有關(guān),現(xiàn)從該市“五一”出游旅客中隨機(jī)抽取500人進(jìn)行調(diào)查,得到如下2×2列聯(lián)表:(單位:人)

選擇“有水的地方”

不選擇“有水的地方”

合計(jì)

90

110

200

210

90

300

合計(jì)

300

200

500

(Ⅰ)據(jù)此樣本,有多大的把握認(rèn)為選擇“有水的地方”與性別有關(guān);

(Ⅱ)若以樣本中各事件的頻率作為概率估計(jì)全市“五一”所有出游旅客情況,現(xiàn)從該市的全體出游旅客(人數(shù)眾多)中隨機(jī)抽取3人,設(shè)3人中選擇“有水的地方”的人數(shù)為隨機(jī)變量X,求隨機(jī)變量X的數(shù)學(xué)期望和方差.

附臨界值表及參考公式:

P(K2≥k0

0.05

0.025

0.010

0.005

0.001

k0

3.841

5.024

6.635

7.879

10.828

,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|(a﹣1)x2﹣x+2=0}有且只有一個(gè)元素,則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣a|,g(x)=x+1.

(1)若a=1,求不等式f(x)≤1的解集;

(2)對(duì)任意的x∈R,f(x)+|g(x)|≥a2+2a(a>0)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+)= ,曲線C的參數(shù)方程為 (α為參數(shù)).

(1)求直線l的普通方程;

(2)若P是曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的最大距離及點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組函數(shù)中,表示同一函數(shù)的是(
A.y=x+1與y=
B.f(x)= 與g(x)=x
C.f(x)=|x|與g(x)=
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)為豐富居民節(jié)日活動(dòng),組織了迎新春象棋大賽,已知報(bào)名的選手情況統(tǒng)計(jì)如下表:

組別

總計(jì)

中年組

91

老年組

16

已知中年組女性選手人數(shù)是僅比老年組女性選手人數(shù)多2人.若對(duì)中年組和老年組分別利用分層抽樣的方法抽取部分報(bào)名者參加比賽,已知老年組抽取了5人,其中女性3人,中年組抽取了7人.

)求表格中的數(shù)據(jù)

)若從選出的中年組的選手中隨機(jī)抽取兩名進(jìn)行比賽,求至少有一名女性選手的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一企業(yè)從某條生產(chǎn)線上隨機(jī)抽取30件產(chǎn)品,測(cè)量這些產(chǎn)品的某項(xiàng)技術(shù)指標(biāo)值,得到如下的頻數(shù)分布表:

頻數(shù)

2

6

18

4

(I)估計(jì)該技術(shù)指標(biāo)值的平均數(shù)和眾數(shù)(以各組區(qū)間的中點(diǎn)值代表該組的取值);

(II) ,則該產(chǎn)品不合格,其余的是合格產(chǎn)品,從不合格的產(chǎn)品中隨機(jī)抽取2件,求抽取的2件產(chǎn)品中技術(shù)指標(biāo)值小于的產(chǎn)品恰有1件的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案