【題目】已知橢圓的離心率為,左頂點(diǎn)為A,右焦點(diǎn)為F,且|AF|=3.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(diǎn)F做互相垂直的兩條直線l1,l2分別交直線l:x=4于M,N兩點(diǎn),直線AM,AN分別交橢圓于P,Q兩點(diǎn),求證:P,F(xiàn),Q三點(diǎn)共線.

【答案】(Ⅰ);(Ⅱ)見解析

【解析】

(Ⅰ)根據(jù)離心率和|AF|=3,可得a=2,c=1,從而求出橢圓的方程;

(Ⅱ)設(shè)l1:y=k1(x-1),聯(lián)立l1和橢圓的方程,得P坐標(biāo),因?yàn)橹本l1,l2垂直,同理得Q坐標(biāo).且F(1,0),所以按分類討論,判斷即可.

(Ⅰ)設(shè)橢圓的半焦距為c,依題意:,

得b2=a2-c2=3,所以橢圓的方程是

(Ⅱ)由題意可知,直線l1,l2的斜率均存在且不為0,A(-2,0),F(xiàn)(1,0),設(shè)l1,l2的斜率分別為k1,k2,則k1k2=-1.

直線l1的方程為y=k1(x-1),則M點(diǎn)坐標(biāo)為(4,3k1),得,設(shè)直線AM的方程為,

得:

因?yàn)閤=-2是方程的根,所以,.同理可得

當(dāng),即時(shí),可得,又F(1,0),所以P,F(xiàn),Q三點(diǎn)共線;

當(dāng),即,時(shí),,

,得kQF=kPF,所以P,F(xiàn),Q三點(diǎn)共線;

綜上所述:P,F(xiàn),Q三點(diǎn)共線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)存在極小值點(diǎn),求的取值范圍;

(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,側(cè)面底面.

(1)求證:平面平面

(2)若,且二面角等于,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(I)討論函數(shù)的零點(diǎn)個(gè)數(shù);

(Ⅱ)若曲線在點(diǎn)處的切線經(jīng)過點(diǎn),當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=f(x),x∈[1,+∞),數(shù)列{an}滿足,

①函數(shù)f(x)是增函數(shù);

②數(shù)列{an}是遞增數(shù)列.

寫出一個(gè)滿足①的函數(shù)f(x)的解析式______

寫出一個(gè)滿足②但不滿足①的函數(shù)f(x)的解析式______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓軸交于 兩點(diǎn),且

(1)求橢圓的方程;

(2)設(shè)點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),且直線與直線分別交于 兩點(diǎn).是否存在點(diǎn)使得以 為直徑的圓經(jīng)過點(diǎn)?若存在,求出點(diǎn)的橫坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種物質(zhì)在時(shí)刻的濃度的函數(shù)關(guān)系為為常數(shù)).在測得該物質(zhì)的濃度分別為,那么在時(shí),該物質(zhì)的濃度為___________;若該物質(zhì)的濃度小于,則最小的整數(shù)的值為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形所在平面與半圓弧所在平面垂直,上異于的點(diǎn)

(1)證明:平面平面;

(2)在線段上是否存在點(diǎn),使得平面?說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形為矩形,,均為等邊三角形,

(1)過作截面與線段交于點(diǎn),使得平面,試確定點(diǎn)的位置,并予以證明;

(2)在(1)的條件下,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案