函數(shù)y=x2在矩陣M=
.
10
0
1
4
.
 變換作用下的結(jié)果為
y=
1
4
x2
y=
1
4
x2
分析:先設(shè)P(x,y)是函數(shù)y=x2圖象上的任一點,P1(x′,y′)是P(x,y)在矩陣M對應(yīng)變換作用下新曲線上的對應(yīng)點,根據(jù)矩陣變換求出P與P1的關(guān)系,代入已知曲線求出所求曲線即可.
解答:解:設(shè)P(x,y)是函數(shù)y=x2圖象上的任一點,
P1(x′,y′)是P(x,y)在矩陣M=
.
10
0
1
4
.
變換作用下新曲線上的對應(yīng)點,
.
x′
y′
.
=
.
10
0
1
4
.
.
x
y
.
=
.
x
y
4
.

x′=x
y′=
y
4
,所以
x=x′
y=4y′

x=x′
y=4y′
代入y=x2得4y=x2,
即y=
1
4
x2(8分)
故答案為:y=
1
4
x2
點評:本題主要考查了幾種特殊的矩陣變換,以及軌跡方程等有關(guān)知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

形如
ab
cd
的式子叫做二行二列矩陣,定義矩陣的一種運算
ab
cd
x
y
=
ax+bx
cx+dy
.該運算的幾何意義為平面上的點(x,y)在矩陣
ab
cd
的作用下變換成點(ax+by,cx+dy).
(1)設(shè)點M(-2,1)在
01
10
的作用下變換成點M′,求點M′的坐標(biāo);
(2)設(shè)數(shù)列{an} 的前n項和為Sn ,且對任意正整數(shù)n,點A(Sn,n)在
01
10
的作用下變換成的點A′在函數(shù)f(x)=x2+x的圖象上,求an的表達式;
(3)在(2)的條件下,設(shè)bn為數(shù)列{1-
1
an
}的前n項的積,是否存在實數(shù)a使得不等式bn
an+1
<a
對一切n∈N*都成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若點A(a,b)(其中a≠b)在矩陣M=
0-1
10
對應(yīng)變換的作用下得到的點為B(-b,a).
(Ⅰ)求矩陣M的逆矩陣;
(Ⅱ)求曲線C:x2+y2=1在矩陣N=
0
1
2
10
所對應(yīng)變換的作用下得到的新的曲線C′的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
(Ⅰ)以直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位已知直線的極坐標(biāo)方程為θ=
π
4
(ρ∈R)
,它與曲線
x=2+
5
cosθ
y=1+
5
sinθ
為參數(shù))相交于兩點A和B,求|AB|;
(Ⅱ)已知極點與原點重合,極軸與x軸正半軸重合,若直線C1的極坐標(biāo)方程為:ρcos(θ-
π
4
)=
2
,曲線C2的參數(shù)方程為:
x=1+cosθ
y=3+sinθ
(θ為參數(shù)),試求曲線C2關(guān)于直線C1對稱的曲線的直角坐標(biāo)方程.
(3)選修4-5:不等式選講
(Ⅰ)已知函數(shù)f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,求實數(shù)m的取值范圍.
(Ⅱ)已知實數(shù)x、y、z滿足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是M2=
11
01
;
(I)求點P(2,1)在T1作用下的點Q的坐標(biāo);
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標(biāo)系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標(biāo)方程;
(Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•三明模擬)(1)選修4-2:矩陣與變換
設(shè)矩陣M=
1a
b1

(I)若a=2,b=3,求矩陣M的逆矩陣M-1
(II)若曲線C:x2+4xy+2y2=1在矩陣M的作用下變換成曲線C':x2-2y2=1,求a+b的值.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為
x=1+2cosα
y=-1+2sinα
(α為參數(shù)),點Q極坐標(biāo)為(2,
4
)

(Ⅰ)化圓C的參數(shù)方程為極坐標(biāo)方程;
(Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|x+1|+|x-2|.
(Ⅰ)求y=f(x)的最小值;
(Ⅱ)若關(guān)于x的不等式f(x)≥4的解集為A,求集合A.

查看答案和解析>>

同步練習(xí)冊答案