【題目】設(shè)函數(shù)
(I)討論的單調(diào)性;
(II)若有兩個(gè)極值點(diǎn)和,記過點(diǎn)的直線的斜率為,問:是否存在,使得?若存在,求出的值,若不存在,請(qǐng)說明理由.
【答案】:(I)的定義域?yàn)?/span>
令
當(dāng)故上單調(diào)遞增.
當(dāng)的兩根都小于0,在上,,故上單調(diào)遞增.
當(dāng)的兩根為,
當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,故分別在上單調(diào)遞增,在上單調(diào)遞減.
(II)由(I)知,.
因?yàn)?/span>,所以
又由(I)知,.于是
若存在,使得則.即.亦即
再由(I)知,函數(shù)在上單調(diào)遞增,而,所以這與式矛盾.故不存在,使得
【解析】
【試題分析】(1)先對(duì)函數(shù)求導(dǎo),再運(yùn)用導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系分析討論函數(shù)的符號(hào),進(jìn)而運(yùn)用分類整合思想對(duì)實(shí)數(shù)進(jìn)行分三類進(jìn)行討論并判定其單調(diào)性,求出單調(diào)區(qū)間;(2)先假設(shè)滿足題設(shè)條件的參數(shù)存在,再借助題設(shè)條件,推得,即,亦即
進(jìn)而轉(zhuǎn)化為判定函數(shù)在上是單調(diào)遞增的問題,然后借助導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系運(yùn)用反證法進(jìn)行分析推證,從而作出判斷:
解:(Ⅰ)定義域?yàn)?/span>,
,
令,
①當(dāng)時(shí),,,故在上單調(diào)遞增,
②當(dāng)時(shí),,的兩根都小于零,在上,,
故在上單調(diào)遞增,
③當(dāng)時(shí),,的兩根為,
當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;
故分別在上單調(diào)遞增,在上單調(diào)遞減.
(Ⅱ)由(Ⅰ)知,,
因?yàn)?/span>.
所以,
又由(1)知,,于是,
若存在,使得,則,即,
亦即()
再由(Ⅰ)知,函數(shù)在上單調(diào)遞增,
而,所以,這與()式矛盾,
故不存在,使得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù)
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2ax2+2bx,若存在實(shí)數(shù)x0∈(0,t),使得對(duì)任意不為零的實(shí)數(shù)a,b均有f(x0)=a+b成立,則t的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為定義在實(shí)數(shù)集上的函數(shù),把方程稱為函數(shù)的特征方程,特征方程的兩個(gè)實(shí)根、(),稱為的特征根.
(1)討論函數(shù)的奇偶性,并說明理由;
(2)已知為給定實(shí)數(shù),求的表達(dá)式;
(3)把函數(shù),的最大值記作,最小值記作,研究函數(shù),的單調(diào)性,令,若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)判斷并證明的單調(diào)性;
(Ⅱ)是否存在實(shí)數(shù),使函數(shù)為奇函數(shù)?證明你的結(jié)論;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的一個(gè)內(nèi)角為,并且三邊長(zhǎng)構(gòu)成公差為4的等差數(shù)列,則的面積為( )
A. 15 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,,,,為線段的中點(diǎn),是線段上一動(dòng)點(diǎn).
(1)當(dāng)時(shí),求證:面;
(2)當(dāng)的面積最小時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x-1|+|x-2a|.
(1)當(dāng)a=1時(shí),求f(x)≤3的解集;
(2)當(dāng)x∈[1,2]時(shí),f(x)≤3恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若k≠0,試討論函數(shù)f(x)的奇偶性,并說明理由;
(2)已知f(x)在(﹣∞,0]上單調(diào)遞減,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com